Math, asked by mohi754, 9 months ago

please answer this fast please ​

Attachments:

Answers

Answered by Truebrainlian9899
15

☞︎︎︎ Question :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

✰ Solve-

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \large( \small \dfrac{5}{3} \large) {}^{ - 5}  \small \times \large( \small \dfrac{25}{9} \large) {}^{  \frac{ - 11}{2} }  \small  = \large( \small \dfrac{5}{3} \large) {}^{ 8y}  \small }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☞︎︎︎ Solution (with understanding:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

✈︎ rule - anything has power in fraction form then the power in denominatir becomes the radical sign.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \large( \small \dfrac{5}{3} \large) {}^{ -   5}  \small \times  \sqrt{ \large( \small \dfrac{25}{9} }\large)^{ - 11}  \small  = \large( \small \dfrac{5}{3} \large) {}^{ 8y}  \small }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

✈︎ Now we see thatvthe power in denominator is 2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

➪ It means square root of number which has the power x/2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ✰ x = -11

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \large( \small \dfrac{5}{3} \large) {}^{ -   5}  \small \times  { \large( \small \dfrac{5}{3} }\large)^{ - 11}  \small  = \large( \small \dfrac{5}{3} \large) {}^{ 8y}  \small }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☆✈︎ rule - In multiplication, when the basis are same the the powers are added.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \large( \small \dfrac{5}{3} \large) {}^{ (-   5) + ( - 11) }  \small  = \large( \small \dfrac{5}{3} \large) {}^{ 8y}  \small }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

❥︎ We know = ( - )( + ) =( - ) ✓

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \large( \small \dfrac{5}{3} \large) {}^{ -   5 - 11 }  \small  = \large( \small \dfrac{5}{3} \large) {}^{ 8y}  \small }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \large( \small \dfrac{5}{3} \large) {}^{ - 16 }  \small  = \large( \small \dfrac{5}{3} \large) {}^{ 8y}  \small }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

★➪ rule - Since bases are same , so the powers can be equated.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☕︎ powers -

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • - 16

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • 8y

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☕︎ On solving :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \mathtt{ \looparrowright \:  - 16 = 8y}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

❥︎ On transposing the terms :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \dfrac{ - 16}{8}  = y}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \dashrightarrow \:  \:  \boxed{ \mathtt{ \therefore \: y =   - 2}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ❥︎ Check :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \implies\mathtt{ \large( \small \dfrac{5}{3} \large) {}^{ - 5}  \small \times \large( \small \dfrac{25}{9} \large) {}^{  \frac{ - 11}{2} }  \small  = \large( \small \dfrac{5}{3} \large) {}^{ 8y}  \small }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 ☞︎︎︎ \: \mathtt{ \large( \small \dfrac{5}{3} \large) {}^{ -   5}  \small \times  \sqrt{ \large( \small \dfrac{25}{9} }\large)^{ - 11}  \small  = \large( \small \dfrac{5}{3} \large) {}^{ 8( - 2)}  \small }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☞︎︎︎ \: \mathtt{ \large( \small \dfrac{5}{3} \large) {}^{ -   5}  \small \times  { \large( \small \dfrac{5}{3} }\large)^{ - 11}  \small  = \large( \small \dfrac{5}{3} \large) {}^{ - 16}  \small }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 ➪ \: \mathtt{ \large( \small \dfrac{5}{3} \large) {}^{ - 16 }  \small  = \large( \small \dfrac{5}{3} \large) {}^{  - 16}  \small }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

✈︎ L.H.S = R.H.S

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

✞︎ Hence proved

Similar questions