Math, asked by Anushkashrma1103, 10 months ago

Please answer this

For correct answer

10 thanks+5 Star​

Attachments:

Answers

Answered by RvChaudharY50
35

Qᴜᴇsᴛɪᴏɴ :-

if x + 2y = 8 and xy = 6, find the value of x³ + 8y³ = ?

Sᴏʟᴜᴛɪᴏɴ :-

→ x + 2y = 8

cubing both sides, we get,

→ (x + 2y)³ = 8³

using (a + b)³ = a³ + b³ + 3ab(a + b) in LHS, we get,

→ x³ + (2y)³ + 3 * x * 2y * (x + 2y) = 512

→ x³ + 8y³ + 6xy * (x + 2y) = 512

putting xy = 6 Now,

→ x³ + 8y³ + 6 * 6 * (x + 2y) = 512

putting (x + 2y) = 8 Now,

→ x³ + 8y³ + 36 * 8 = 512

→ x³ + 8y³ + 288 = 512

→ x³ + 8y³ = 512 - 288

→ x³ + 8y³ = 224 (Ans.)

Answered by Anonymous
3
{ \red{ \huge{ \underline{ \underline{ \mathfrak{Question:-}}}}}}

▪ If x + 2y = 8 and xy = 6 , find the value of

{ \bold{ {x}^{ 3} + 8 {y}^{3} }}

{ \red{ \huge{ \underline{ \underline{ \mathfrak{S olution: -}}}}}}

the given equation is....

{ \bold{x + 2y = 8}}

cubing both the sides....

{ \bold{ \implies{ {( x + 2y)}^{3} = {8}^{3} }}}

using the identity of algebra ....

{ \boxed{ \red{ \bold{ {(a + b)}^{3} = {a}^{3} + {b}^{3} + 3ab(a + b)}}}}

{ \bold{ \implies{ {(x + 2y)}^{3} = 512}}}

{ \bold{ \implies{ {x}^{3} + {(2y)}^{3} + 3x(2y)(x + 2y) = 512}}}

{ \bold{ \implies{ {x}^{3} + 8 {y}^{3} + 6xy(x + 2y) = 512}}}

in the question, it's given that....

{ \pink{ \bold{xy = 6}}}

{ \pink{ \bold{ x + 2y = 8}}}

substituting the values of xy and (x + 2y) in the above equation......

{ \bold{ \implies{ {x}^{3} + 8 {y}^{3} + 6 \times 6 \times 8 = 512}}}

{ \bold{ \implies{ {x}^{3} + 8 {y}^{3} = 512 - 288}}}

{ \boxed{ \red{ \bold{ \implies{ {x}^{3} + 8 {y}^{3} = 288}}}}}
Similar questions