Math, asked by srivaishnavi4788, 4 months ago

please answer this...from maths 10th​

Attachments:

Answers

Answered by sapnakumarisapna352
1

Step-by-step explanation:

i hope it may help you ...

Attachments:
Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{cos \theta \:  =  \: \dfrac{2ab}{ {a}^{2} +  {b}^{2}  } } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{sin \: \theta}  \\ &\sf{tan \: \theta}  \\ &\sf{sin \: \theta \: . \: tan \: \theta} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \large \boxed{\tt :  ⟼\begin{gathered}\bf\red{ {sin}^{2} \: \theta \:  +  {cos}^{2} \: \theta \:  =  \: 1  }\end{gathered}}

 \large \boxed {\red{\tt :  ⟼ \: tan \: \theta \:  =  \: \dfrac{sin \: \theta}{cos \: \theta} }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt :  ⟼ \:  {cos} \: \theta \:  =  \: \dfrac{2ab}{ {a}^{2} +  {b}^{2}  }

\tt :  ⟼ \:  {sin}^{2} \theta +  {cos}^{2} \theta = 1

\tt :  ⟼ \:  {sin}^{2} \theta \:  = 1 -  {cos}^{2} \theta

\tt :  ⟼ \:  = 1 -  { \bigg(\dfrac{2ab}{ {a}^{2} +  {b}^{2}  }  \bigg)}^{2}

\tt :  ⟼ \:  = 1 -  \bigg(\dfrac{4 {a}^{2}  {b}^{2} }{ {( {a}^{2}  +  {b}^{2} )}^{2} }  \bigg)

\tt :  ⟼ \:  = \dfrac{ {( {a}^{2} +  {b}^{2} ) }^{2} - 4 {a}^{2}  {b}^{2}  }{ {( {a}^{2} +  {b}^{2} ) }^{2} }

\tt :  ⟼ \:  = \dfrac{ {a}^{4} +  {b}^{4} + 2 {a}^{2}  {b}^{2}  - 4 {a}^{2}  {b}^{2}   }{ {( {a}^{2}  +  {b}^{2}) }^{2} }

\tt :  ⟼ \:  = \dfrac{ {a}^{4}  +  {b}^{4} - 2 {a}^{2} {b}^{2}   }{ {( {a}^{2} +  {b}^{2})  }^{2} }

\tt :  ⟼ \:  = \dfrac{ {( {a}^{2}  -  {b}^{2}) }^{2} }{ {( {a}^{2} +  {b}^{2} ) }^{2} }

\tt :   \implies \:  sin \: \theta \:  = \dfrac{ {a}^{2}  -  {b}^{2} }{ {a}^{2} +  {b}^{2}  }

 \large \boxed {\red{\tt :  ⟼ \: Now,  \: tan \: \theta = \dfrac{sin \: \theta}{cos \: \theta} }}

\tt :  ⟼ \:  \therefore \: tan \: \theta = \dfrac{ {a}^{2}  -  {b}^{2} }{ {a}^{2} +  {b}^{2}  }  \div \dfrac{2ab}{ {a}^{2} +  {b}^{2}  }

\bf\implies \:tan \: \theta \:  = \dfrac{ {a}^{2}  -  {b}^{2} }{2ab}

 {\red{\tt :  ⟼Hence \: sin \: \theta \:  \times  \: tan \: \theta}}

\tt :  ⟼ \:  = \dfrac{ {a}^{2} -  {b}^{2}  }{ {a}^{2} +  {b}^{2}  }  \times \dfrac{ {a}^{2} -  {b}^{2}  }{2 ab }

\tt :  ⟼ = \dfrac{ {( {a}^{2} -  {b}^{2})  }^{2} }{2ab( {a}^{2} +  {b}^{2})  }

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\bf \:  ⟼ Explore  \: more } ✍

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions