Math, asked by rajeshtinku890, 5 months ago

please answer this i asked this question 3 times in my account my points are wasting please give me an appropriate step by step long answer please help me

Attachments:

Answers

Answered by mysticd
3

 LHS = \frac{(sin \theta + cos \theta)}{(sin \theta - cos \theta )} +  \frac{(sin \theta - cos \theta)}{(sin \theta + cos \theta )} \\= \frac{(sin\theta + cos \theta )^{2} + (sin \theta - cos \theta)^{2}}{(sin \theta - cos \theta )(sin \theta + cos \theta)} \\= \frac{2(sin^{2} \theta + cos^{2}\theta)}{sin^{2} \theta - cos^{2} \theta }

/* We know that, */

 \blue{ (a+b)^{2} + (a-b)^{2} = 2(a^{2} + b^{2}) }

= \frac{ 2 \times 1 }{ sin^{2}\theta - (1 - sin^{2} \theta )}

 \boxed{ \pink{ \because sin^{2} \theta + cos^{2} \theta = 1 }}

= \frac{2}{sin^{2} \theta - 1 + sin^{2} \theta }\\= \frac{2}{2sin^{2} \theta - 1 } \\= RHS

•••♪

Similar questions