Physics, asked by ss8534450, 10 months ago

please answer this I will mark as brainliest it's urgent please ​

Attachments:

Answers

Answered by Hemu1432
1

Answer:

Here is your answer I hope this is help full

Attachments:

ShivamKashyap08: Temperature of Source is 400 Kelvin Not 500 Kelvin....Wrong Answer!!
Answered by ShivamKashyap08
7

Answer:

  • Temperature (T) of the Source is 480 K.

Given:

CASE-1

  1. Efficiency of Carnot Engine (η) = 40 %.
  2. Temperature of Source (T₂) = 400 K.

CASE-2

  1. Efficiency of Carnot Engine (η) = 50 %.

Explanation:

\rule{300}{1.5}

From The Carnot Engine's Formula we Know,

\large\bigstar \: {\boxed{\tt \eta = 1 - \dfrac{T_2}{T_1}}}

\bold{Here}\begin{cases}\eta \: \text{Denotes Efficiency} \\ T_2 \: \text{Denotes Temperature of Exhaust} \\ T_1 \; \text{Denotes Temperature of Source}\end{cases}

Now,

\large{\boxed{\tt \eta = 1 - \dfrac{T_2}{T_1}}}

Substituting the values,

\large{\tt \longmapsto 40 \% = 1 - \dfrac{T_2}{400}}

\large{\tt \longmapsto \dfrac{40}{100} = 1 - \dfrac{T_2}{400}}

\large{\tt \longmapsto \cancel{\dfrac{40}{100}} = 1 - \dfrac{T_2}{400}}

\large{\tt \longmapsto \dfrac{4}{10} = 1 - \dfrac{T_2}{400}}

\large{\tt \longmapsto \dfrac{T_2}{400} = 1 - \dfrac{4}{10}}

\large{\tt \longmapsto \dfrac{T_2}{400} =  \dfrac{10 - 4}{10}}

\large{\tt \longmapsto \dfrac{T_2}{400} =  \dfrac{6}{10}}

\large{\tt \longmapsto T_2 = \dfrac{6}{10} \times 400}

\large{\tt \longmapsto T_2 = \dfrac{6}{\cancel{10}} \times \cancel{400}}

\large{\tt \longmapsto T_2 = 6 \times 40}

\large\longmapsto{\underline{\boxed{\tt T_2 = 240 \: K}}}

\rule{300}{1.5}

\rule{300}{1.5}

Now, this Exhaust Temperature is same For Second case.

From The Carnot Engine's Formula we Know,

\large\bigstar \: {\boxed{\tt \eta = 1 - \dfrac{T_2}{T_1}}}

\bold{Here}\begin{cases}\eta \: \text{Denotes Efficiency} \\ T_2 \: \text{Denotes Temperature of Exhaust} \\ T_1 \; \text{Denotes Temperature of Source}\end{cases}

Now,

\large{\boxed{\tt \eta = 1 - \dfrac{T_2}{T_1}}}

Substituting the values,

\large{\tt \longmapsto 50 \% = 1 - \dfrac{240}{T_1}}

\large{\tt \longmapsto \dfrac{50}{100} = 1 - \dfrac{240}{T_1}}

\large{\tt \longmapsto \cancel{\dfrac{50}{100}} = 1 - \dfrac{240}{T_1}}

\large{\tt \longmapsto \dfrac{5}{10} = 1 - \dfrac{240}{T_1}}

\large{\tt \longmapsto \dfrac{240}{T_1} = 1 - \dfrac{5}{10}}

\large{\tt \longmapsto \dfrac{240}{T_1} =  \dfrac{10 - 5}{10}}

\large{\tt \longmapsto \dfrac{240}{T_1} = \dfrac{5}{10}}

\large{\tt \longmapsto \dfrac{240}{T_1} = \cancel{\dfrac{5}{10}}}

\large{\tt \longmapsto \dfrac{240}{T_1} = \dfrac{1}{2}}

\large{\tt \longmapsto T_1 \times 1 = 240 \times 2}

\large{\tt \longmapsto T_1  = 240 \times 2}

\huge{\boxed{\boxed{\tt T_1 = 240 \: K}}}

Temperature (T) of the Source is 480 K (Option- 2).

\rule{300}{1.5}

Similar questions