please answer this
I will mark the best answer as brainliest
Answers
Answer:
Step-by-step explanation:
From the figure we get to know that the external points of the circle of circle A, B, & C are the tangents and
AB = 20 CM , BC = 15 CM , AC = 19 CM
We know that the tangents drawn from the external points of the circle are equal.
AR = AQ = a
BR = BP = b
CP = CQ = c
Given AB = 20 CM , BC = 15 CM , AC = 19 CM
AB = AR + BR
a + b = 20 ----------(1)
BC = BP + CP
b + c = 15 ----------(2)
AC = AQ + CQ
a + c = 19 ---------(3)
By adding equation (1), (2) and (3), we get-
(a + b) + (b + c) + (a +c) = 20 + 15 + 19
2a + 2b + 2c = 54
(a + b + c) = 27 ----------(4)
Now, we will substitute equation (1) in equation (4). So, we get –
(a + b) + c = 27
20 + c = 27
Now, we will substitute the value of ‘c’ in equation (3)
a + c = 19
a + 7 = 19
By substituting the value of ‘c’ in equation (2), we get
b + c = 15
b + 7 = 15
Therefore,
AR = AQ = a = 12
BR = BP = b = 8
CP = CQ = c = 7