Math, asked by Radhathory, 4 months ago

please answer this if you know​

Attachments:

Answers

Answered by ITzteriqueenxx
5

Answer:

1 because whose power is 0 =1

Answered by OyeeKanak
25

Answer:-

  • 1

Question:-

 =  \bf \:  \frac{ {sin}^{3} \theta \:  +  {cos}^{3}  \theta \:  }{sin \theta \:  +  \: cos \theta \: }  +  \sin \theta \: cos \theta \:  =

Given:-

  •   \bf \:  \frac{ {sin}^{3} \theta \:  +  {cos}^{3}  \theta \:  }{sin \theta \:  +  \: cos \theta \: }  +  \sin \theta \: cos \theta \:  =

Solution:-

⇒ \frac{(sin \theta \:  +  \: cos \theta \: )( {sin}^{2} \theta \:  +  {cos}^{2}  \theta \:  - sin \theta \: cos \theta \: ) }{(sin \theta \:  +  \: cos \theta)}  \\ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ + sin \theta \: cos \theta \:

⇒(1 - sin \theta \: cos \theta \: ) + sin \theta \: cos \theta \:

⇒1 - sin \theta \: cos \theta \:  + sin \theta \: cos \theta \:

⇒ 1

Step-by-step explanation:

Learn more:-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin \theta \: & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \theta & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan \theta & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm not \: defined\\ \\ \rm cosec  \theta & \rm not \: defined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec \theta \:  & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm not \: defined \\ \\ \rm cot  \theta& \rm not \: defined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Similar questions