Math, asked by meryem14, 10 months ago

Please answer this it for urgent

Attachments:

Answers

Answered by Anonymous
3

\Large{\underline{\underline{\mathfrak{\tt{\red{Solution(10).}}}}}}

\Large{\underline{\mathfrak{\tt{\orange{Given}}}}}

  • Radius of big Circle = 6 cm
  • Radius of small Circle = 3 cm

\Large{\underline{\mathfrak{\tt{\orange{Find}}}}}

  • Area of shaded region

\Large{\underline{\underline{\mathfrak{\tt{\red{Explanation}}}}}}

\Large{\underline{\mathfrak{\tt{\orange{Important\:Formula}}}}}

\small\boxed{\underline{\green{\tt{\:Area_{Circle}\:=\:\pi.(Radius)^2}}}}

So, First Calculate Area of Big Circle

\mapsto\tt{\:Area\:of\:big\:Circle\:=\:\pi\times(6)^2} \\ \\ \mapsto\tt{\:Area\:of\:big\:Circle\:=\:\dfrac{22}{7}\times6\times6} \\ \\ \mapsto\tt{\orange{\:Area\:of\:big\:Circle\:=\:\dfrac{792}{7}\:cm^2}}

Now, Calculate Area of Small Circle

\mapsto\tt{\:Area\:of\:Small\:Circle\:=\:\pi\times(3)^2} \\ \\ \mapsto\tt{\:Area\:of\:Small\:Circle\:=\:\dfrac{22}{7}\times3\times3} \\ \\ \mapsto\tt{\orange{\:Area\:of\:Small\:Circle\:=\:\dfrac{198}{7}\:cm^2}}

But, Area for shaded region

we Subtract Area of Small Circle by Area of Big Circle .

So,

\mapsto\tt{\red{\:Area\:of\:shaded\:region\:=\:Area_{big\:circle}\:-\:Area_{small\:circle}}} \\ \\ \small\tt{\green{\:\:\:\:\:\:Keep\:All\:Above\:Values}} \\ \\ \mapsto\tt{\:Area\:of\:Shaded\:region\:=\:\dfrac{792}{7}\:-\:\dfrac{198}{7}} \\ \\ \mapsto\tt{\:Area\:of\:shaded\:region\:=\:\dfrac{792-198}{7}} \\ \\ \mapsto\tt{\red{\:Area\:of\:shaded\:region\:=\:\dfrac{594}{7}\:cm^2}} \\ \\ \Large\tt{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:(Ans.)}}

__________________

Similar questions