Math, asked by atomba27, 2 months ago

please answer this, it's urgent​

Attachments:

Answers

Answered by TMarvel
1

Step-by-step explanation:

Let height of the tower be h'

and distance if the point from the bottom building be b

then,

 \tan( \alpha )  =  \frac{h}{b}  \\  =  > b =  \frac{h}{ \tan( \alpha ) }

___eq(1)

 \tan( \beta )  =  \frac{h +  {h}^{l} }{b}  \\  =  > b =  \frac{h +  {h}^{l} }{ \tan( \beta ) }

____eq(2)

Equating eq(1) and (2)----

 \frac{h}{ \tan( \alpha ) }  =  \frac{h +  {h}^{l} }{ \tan( \beta ) } \\  =  >  \frac{h \tan( \beta ) }{ \tan( \alpha ) }  = h +  {h}^{l} \\  =  > \frac{h \tan( \beta ) }{ \tan( \alpha ) }  - h = {h}^{l} \\  =  >  \frac{h \tan( \beta )  - h \tan( \alpha ) }{ \tan( \alpha ) }  = {h}^{l} \\  =  >  \frac{h( \tan( \beta ) -  \tan( \alpha )  )}{ \tan( \alpha ) }  = {h}^{l}

Hence Proved

Hope it helps :D

Similar questions