Math, asked by BrundansaiCH, 6 months ago

Please answer this linear equation ​

Attachments:

Answers

Answered by Aryan0123
22

\bf{\dfrac{1}{x+3}+\dfrac{1}{x+2} = \dfrac{2}{x+4}}\\\\\\\\ \rm{Taking\:LCM \: on \: Left\: Hand \: Side,}\\\\\\

\sf{\dfrac{(x+2)+(x+3)}{(x+3)(x+2)} = \dfrac{2}{x+4}}\\\\\\\\\longrightarrow \: \: \sf{\dfrac{x+2+x+3}{x(x+2)+3(x+2)} = \dfrac{2}{x+4}}\\\\\\\\\longrightarrow \: \: \sf{\dfrac{2x+5}{x^{2} + 2x+3x + 6} = \dfrac{2}{x+4}}\\\\

\longrightarrow \: \: \sf{\dfrac{2x+5}{x^{2} +5x+6}= \dfrac{2}{x+4}}\\\\\\

On Cross Multiplication,

\\\sf{(2x+5)(x+4)=2(x^{2} +5x+6)}\\\\\\\longrightarrow \: \: \sf{2x(x+4)+5(x+4) = 2(x^{2} + 5x + 6)}\\\\\\\\\longrightarrow \: \: \sf{2x^{2} +8x + 5x + 20= 2x^{2} + 10x + 12}\\\\\\\\\longrightarrow \: \: \sf{2x^{2} + 13x + 20 = 2x^{2} +10x+12 }\\\\\\

Cancelling 2x² on both sides,

\\\\\sf{13x+20=10x+12}\\\\\\\implies \sf{13x-10x = 12-20}\\\\\\\implies \sf{3x = -8}\\\\\\\implies \boxed{\bf{x = \dfrac{-8 }{3}}}\\

Answered by XxsboyxX
14

Answer:

heloo bro r u there plz tell

Similar questions