Math, asked by ughmgee, 11 months ago

Please answer this math question asap!! 30 points and brainliest!!
BRAINLIEST ONLY IF YOU SHOW YOUR WORK!
MUST SHOW WORK!

Attachments:

Answers

Answered by BrainlyConqueror0901
64

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Tan A=0.8}}}

\green{\tt{\therefore{Tan C=1.25}}}

\green{\tt{\therefore{\angle A\approx38.7\degree}}}

\green{\tt{\therefore{\angle C\approx51.3\degree}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:  }} \\  \tt:  \implies Length \: CB = 8 \\  \\  \tt:  \implies Length \: AB= 10 \\  \\ \red{\underline \bold{To \: Find:  }} \\   \tt:  \implies Tan \: A= ? \\  \\ \tt:  \implies Tan \: C= ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Tan \:  \theta =  \frac{Perpendicular}{Base}  \\  \\  \tt:  \implies Tan \: A =  \frac{CB}{AB}  \\  \\  \tt:  \implies Tan \: A =  \frac{8}{10}  \\ \\ \green{\tt{:\implies Tan\:A=0.8}}\\ \\  \tt:  \implies \angle A = Tan^{ - 1} ( \frac{8}{10} ) \\  \\   \green{\tt:  \implies  \angle A  \approx 38.65 \degree} \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Tan \:  \theta =  \frac{Perpendicular}{Base}  \\  \\  \tt:  \implies Tan \: C=  \frac{ab}{cb}  \\  \\  \tt:  \implies Tan \: =  \frac{10}{8}  \\\\ \green{\tt{:\implies Tan\:C=1.25}}  \\\\  \tt:  \implies \angle C = Tan^{ - 1} ( \frac{10}{8} ) \\  \\   \green{\tt:  \implies  \angle C \approx 51.3 \degree}


BrainIyMSDhoni: Great :)
BrainlyConqueror0901: thnx bro : )
Answered by Anonymous
125

\huge\underline\mathfrak\red{Answer}

\green{tanA / =0.8 }

\green{tanC / =1.25}

____________________________________

\blue{Given}

in ∆ ABC,

AB=10

BC=8

∠B = 90°

____________________________________

\orange{to find}

1) tanA

2) tanB

____________________________________

\huge\underline\mathfrak\red{Solution}

As angle B is 90°........................(Given)

I.e. ∆ABC is an Right angled triangle

therefore, using Pythagoras theorem

 {ac}^{2}  =  {ab}^{2}  +  {bc}^{2}

therefore,

 {ac}^{2}   =  {8}^{2}  +  {10}^{2}

 {ac}^{2}  = 64 + 100

 {ac}^{2}  = 164 \\

 {ac}^{2}  = 12.80

now.....

1). Finding tanA

as we know that,

 \tan( \alpha )  =  \frac{Opposite}{Adjacent}

therefore

⭓⭆ \tan(a)  =  \frac{bc}{ab}

⭓⭆ \tan(a)  =  \frac{8}{10}

⭓⭆\tan(a)  = 0.8

⭓⭆\pink{tanA  =0.8 }

similarly,

⭓⭆ \tan(c)  =  \frac{ab}{bc}

⭓⭆ \tan(c)  =  \frac{10}{8}

⭓⭆\tan(c)  = 1.25

⭓⭆\pink{tanA  =1.25 }

therefore

⭓⭆ \tan(a)  = 0.8

and

⭓⭆ \tan(c)  = 1.25

hope it helps:))

@ItzKittuu

Attachments:

BrainIyMSDhoni: Nice :)
Similar questions