Math, asked by yuva1977, 4 months ago

please answer this please​

Attachments:

Answers

Answered by atharvzope1234
0

Answer:

1. (2x+9) x (x+3)

2. (x-2) (x+2)  (x^2 + 4)

3. -90

Step-by-step explanation:

1. Factorise: 2x^2 + 15x + 27

--> Since, we know that for this question we need to find the two numbers whose sum is 15 and product is 54 (2x27 = 54)

Therefore, we can chose 9 and 6 as our numbers

Therefore, by splitting the middle term method, (ax^2 + bx + c)

We get,                            -->  2x^2 + 9x + 6x + 27

On further simplifying it, --> x(2x + 9) + 3(2x + 9)

                                        --> (2x+9) x (x+3)

So,  2x^2 + 15x + 27 = (2x+9) x (x+3)

--------------------------------------------------------------------------------------------------------------

2. Factorise x^4 - 16

--> [Theorum used over here:- x^2 + y^2 = (x+y) (x-y) ]

     x^4 -16 = (x^2 - 4)  (x^2 + 4)  

                 = (x-2) (x+2)  (x^2 + 4)

(Note:- (x^2 + 4) can be further factorised but even if you kept the answer till this portion also, it will be correct.)

--------------------------------------------------------------------------------------------------------------

3. Evaluate 10^3 - 15^3 + 5^3

--> = 5 (2^3 - 3^3 + 1^3) (Taking 5 as common)

    = 5 (8 - 27 + 1)

    = 5 x (-18)

    = -90

--------------------------------------------------------------------------------------------------------------

 Hope this answer helps you!!!

   

Similar questions