Math, asked by hollasavitha75, 10 months ago

please answer this quadratic equation

Attachments:

Answers

Answered by nikithasrinivin
1

Answer:

2a=b+c by using b2 -4ac

Step-by-step explanation:

 {b }^{2}  - 4ac  = 0 \\

{b }^{2}  - 4ac  = 0

a=a-b

b= b- c

c= c-a

by using the formula, replace a,b and c

 {(b - c)}^{2}  - 4(a - b)(c - a) = 0  \\  {b}^{2}  +  {c}^{2}  - 2bc - 4(ac -  {a}^{2}  - bc + ba) = 0 \\  {b}^{2}  +  {c}^{2}  - 2bc - 4c + 4 {a}^{2}  + 4bc - 4ba = 0 \\ 4 {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2bc - 4ac - 4ba = 0 \\  {2}^{2}  {a }^{2}  + {b}^{2}  +  {c}^{2}  + 2bc - 2 \times 2ac - 2 \times 2ba = 0 \\  {2a}^{2}  +  { (- b)}^{2}  +  {( - c)}^{2}  + 2( - b)( - c) + 2 \times 2a( - c) + 2 \times 2a( - b) = 0 \\  {(2a - b - c)}^{2}  = 0 \\ taking \: square \: root \: on \: both \: sides \\ 2a - b - c = 0 \\ 2a = b + c \\ hence \: proved</p><p>[tex]{(b - c)}^{2}  - 4(a - b)(c - a) = 0  \\  {b}^{2}  +  {c}^{2}  - 2bc - 4(ac -  {a}^{2}  - bc + ba) = 0 \\  {b}^{2}  +  {c}^{2}  - 2bc - 4c + 4 {a}^{2}  + 4bc - 4ba = 0 \\ 4 {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2bc - 4ac - 4ba = 0 \\  {2}^{2}  {a }^{2}  + {b}^{2}  +  {c}^{2}  + 2bc - 2 \times 2ac - 2 \times 2ba = 0 \\  {2a}^{2}  +  { (- b)}^{2}  +  {( - c)}^{2}  + 2( - b)( - c) + 2 \times 2a( - c) + 2 \times 2a( - b) = 0 \\  {(2a - b - c)}^{2}  = 0 \\ taking \: square \: root \: on \: both \: sides \\ 2a - b - c = 0 \\ 2a = b + c \\ hence \: proved

[/tex]

Similar questions