Math, asked by vanibattu, 8 months ago

please answer this quality answer will be marked as brainliest
if spammed immediately reported
explain briefly​

Attachments:

Answers

Answered by BrainlyConqueror0901
44

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{tan \frac{ \theta +  \alpha }{2} tan \frac{ \theta -  \alpha }{2}  =   {tan}^{2}  \:  \frac{ \beta }{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies cos \:  \theta = cos \:  \alpha  \: cos \:  \beta  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies tan \frac{ \theta +  \alpha }{2} tan \frac{ \theta -  \alpha }{2}  = ?

• According to given question :

 \bold{As \: we \: know \: that}  \\  \tt:  \implies\tan \frac{ \theta +  \alpha }{2} tan \frac{ \theta -  \alpha }{2}   \\  \\ \tt:  \implies  \frac{sin  \: \bigg  (\frac{ \theta +  \alpha }{2} \bigg)}{cos \bigg( \frac{ \theta +  \alpha }{2} \bigg)}  \times  \frac{sin \bigg(\frac{ \theta -  \alpha }{2} \:  \bigg)}{cos \: \bigg(\frac{ \theta -  \alpha }{2} \bigg)}  \\  \\ \text{Multiplying \: both \: in \: numerator \: and \: denominator \:by \: 2}    \\  \\ \tt:  \implies \frac{2 \: sin  \: \bigg  (\frac{ \theta +  \alpha }{2} \bigg)}{2 \: cos \bigg( \frac{ \theta +  \alpha }{2} \bigg)}    \frac{sin \bigg(\frac{ \theta -  \alpha }{2} \:  \bigg)}{cos \: \bigg(\frac{ \theta -  \alpha }{2} \bigg)}

 \tt \circ \:2 \: sin \: A\: sin \: B = cos (A - B)  - cos(A + B) \\  \\ \tt \circ \:2 \: cos\: A \: cos\: B = cos (A  + B)   +  cos(A - B) \\  \\ \tt:  \implies  \frac{cos \bigg(  \frac{ \theta  +  \alpha }{2}  -  \bigg( \frac{ \theta  -  \alpha }{2}  \bigg) \bigg) - cos \bigg( \frac{ \theta +  \alpha }{2} +  \frac{ \theta -  \alpha }{2} \bigg ) }{cos \bigg(  \frac{ \theta  +  \alpha }{2}    +   \frac{ \theta  -   \alpha }{2}  \bigg)  + cos \bigg( \frac{ \theta +  \alpha }{2}  -  \bigg( \frac{ \theta    - \alpha }{2}  \bigg)\bigg )} \\  \\  \tt:  \implies  \frac{cos \bigg(  \frac{ \theta  +  \alpha -  \theta +  \alpha  }{2}   \bigg) - cos \bigg( \frac{ \theta +  \alpha }{2} +  \frac{ \theta -  \alpha }{2} \bigg ) }{cos \bigg(  \frac{ \theta  +  \alpha }{2}   +   \frac{ \theta  -   \alpha }{2}  \bigg)  + cos \bigg( \frac{ \theta +  \alpha -  \theta +  \alpha  }{2}  \bigg )}

 \tt:  \implies  \frac{cos \:  \alpha  - cos \:  \theta}{cos \: \theta +  cos \:  \alpha  }  \\  \\  \tt:  \implies  \frac{cos \:  \alpha  -  cos \:  \alpha \:cos \:  \beta  }{cos \:  \alpha  \: cos \:  \beta  + cos \:  \alpha }  \\  \\  \tt:  \implies  \frac{cos \alpha (1 - cos \:  \beta) }{cos \:  \alpha (cos \:  \beta   + 1)}  \\ \\ \tt:  \implies  \frac{1 -  cos \:  \beta }{cos \:  \beta  + 1}  \\  \\  \tt \circ \: cos \: 2 x  = 1 -  2{sin}^{2} \:x  \\  \\  \tt \circ \:    2x  =  \beta \implies x =  \frac{ \beta }{2}   \\  \\  \tt \circ \:cos \:  \beta  = 1 - 2 {sin}^{2}   \:  \frac{ \beta }{2}    \\   \\  \tt:  \implies   \frac{1 -  \bigg(1 - 2 {sin}^{2} \:  \frac{ \beta }{2} \bigg)  }{cos \:  \beta  + 1}  \\  \\  \tt:  \implies  \frac{2 {sin}^{2}  \:  \frac{ \beta }{2} }{cos \:  \beta  + 1}

 \tt \circ \: cos \: 2 x = 2 cos^{2}  \: x - 1 \\  \\  \tt \circ \: cos \:  \beta  = 2 {cos}^{2}  \:  \frac{ \beta }{2}  - 1 \\  \\  \tt:  \implies  \frac{2sin^{2}  \:  \frac{ \beta }{2} }{2cos^{2} \:  \frac{ \beta }{2}  }  \\  \\  \tt:  \implies  \frac{sin^{2} }{cos^{2} }  \bigg (\frac{ \beta }{2}  \bigg) \\  \\   \green{\tt :  \implies  {tan}^{2}  \:  \frac{ \beta }{2} } \\  \\   \green{\tt \therefore tan \frac{ \theta +  \alpha }{2} tan \frac{ \theta -  \alpha }{2}  =   {tan}^{2}  \:  \frac{ \beta }{2} }

Answered by Anonymous
5

we have,

 \tan  \frac{\theta +  \alpha }{2}  \tan \frac{\theta -  \alpha }{2}  =  \big( \frac{  \tan \frac{  \theta}{2}  +  \tan  \frac{ \alpha }{2}  }{1 -  \tan \frac{\theta}{2}   \tan \frac{ \alpha }{2}  }  \big)\big( \frac{  \tan \frac{  \theta}{2}   -   \tan  \frac{ \alpha }{2}  }{1  +  \tan \frac{\theta}{2}   \tan \frac{ \alpha }{2}  }  \big)

 =    \frac{ { \tan }^{2}  \frac{\theta}{2} -  { \tan }^{2}  \frac{ \alpha }{2}  }{1 -   { \tan }^{2}  \frac{\theta}{2} { \tan}^{2} \theta  }

 =  \frac{ \frac{(1 -  \cos\theta) }{(1 +  \cos\theta)  }  - \frac{(1  -  \cos \alpha ) }{(1 +  \cos\alpha)  } }{ 1 -  \frac{(1 -  \cos\theta) }{(1 +  \cos\theta )}  \times ( \frac{1 -  \cos \alpha  }{1 +  \cos \alpha  }  )}  =  \frac{2( \cos \alpha  -  \cos\theta)  }{2( \cos \alpha  +  \cos\theta)  }

 =  \frac{ \cos \alpha (1 -  \cos \beta )  }{ \cos \alpha (1 +  \cos \beta )  } (∵ \cos\theta =  \cos \alpha  \cos \beta ) =  { \tan }^{2}    \frac{ \beta }{2}

Therefore, ur answer is 2)  \boxed{   { \tan }^{2}    \frac{ \beta }{2} }

Similar questions