Physics, asked by shantanulanjewar12, 2 months ago

please answer this que​

Attachments:

Answers

Answered by shadowsabers03
5

The displacement is given by,

\sf{\longrightarrow x=\left[5\sin(\pi t)+12\sin\left(\pi t+\dfrac{\pi}{2}\right)\right]\ cm}

We see that,

\sf{\longrightarrow\sin\left(\pi t+\dfrac{\pi}{2}\right)=\sin\left(\dfrac{\pi}{2}+\pi t\right)}

\sf{\longrightarrow\sin\left(\pi t+\dfrac{\pi}{2}\right)=\cos\left(\pi t\right)}

Then,

\sf{\longrightarrow x=\left[5\sin(\pi t)+12\cos\left(\pi t\right)\right]\ cm}

Divide both sides by \sf{\sqrt{5^2+12^2}=13.}

\sf{\longrightarrow\dfrac{x}{13}=\left[\dfrac{5}{13}\sin(\pi t)+\dfrac{12}{13}\cos\left(\pi t\right)\right]\ cm}

Let there exist an acute angle \alpha such that \sf{\sin\alpha=\dfrac{12}{13}} and \sf{\cos\alpha=\dfrac{5}{13}.}

  • \sf{\alpha=\sin^{-1}\left(\dfrac{12}{13}\right)=\cos^{-1}\left(\dfrac{5}{13}\right)=1.176\ rad}

Then,

\sf{\longrightarrow\dfrac{x}{13}=\left[\sin(\pi t)\cos\alpha+\cos\left(\pi t\right)\sin\alpha\right]\ cm}

Since \sf{\sin x\cos y+\cos x\sin y=\sin(x+y),}

\sf{\longrightarrow\dfrac{x}{13}=\sin(\pi t+\alpha)\ cm}

\sf{\longrightarrow x=13\sin\left(\pi t+\sin^{-1}\left(\dfrac{12}{13}\right)\right)\ cm}

or,

\sf{\longrightarrow x=13\sin(\pi t+1.176)\ cm}

Then,

  • Amplitude \bf{=13\ cm.}
  • Period \bf{=\dfrac{2\pi}{\pi}=2.}

[Period of the function \sf{f(x)=\sin(ax+b)} is \sf{\dfrac{2\pi}{a}} where \sf{a\in\mathbb{R}-\{0\}} and \sf{b\in\mathbb{R}.}]

  • Initial phase of motion \bf{=\sin^{-1}\left(\dfrac{12}{13}\right)=1.176\ rad.}
Similar questions