Math, asked by sakshams, 1 year ago

please answer this question..

Attachments:

Answers

Answered by kvnmurty
2

a,b and c are real numbers.  m is an integer.
a+b+c = 6   --- (1)            ab+bc+ca = 9   --- (2)


Eq (2):  ab = 9–(a+b)c = 9–(6-c)c = c² -6c+9
We know  (a-b)² ≥ 0  for real a and b.

=>   (a+b)²-4ab ≥ 0

=>   (6 - c)² ≥ 4 (c² - 6c + 9)
=>   c² - 12c +36 ≥ 4 c² - 24c + 36
=>   3 c² - 12 c ≤ 0     or      c ( c - 4) ≤ 0
So      0 ≤ c ≤ 4

Let   r1  and r2 be the roots of  x² - (m+2) x + 5 m = 0
=> Let r1 = [m+2 - √(m²-16m+4) ] /2 ,,    r2 =[m+2 + √(m²-16m+4)] /2

We see that clearly  r1 ≤ r2.

m²-16m+4 ≥ 0,  only if  m≤0  or  m≥16 (integers).

    (we can know this by finding its roots).


For  m ≥ 16,  r1 > 4  and also  r2 > 4.  Not valid case.

So consider only  m ≤ 0.  Let  m = -n.  n ≥ 0.

=> r1 = [2-n - √(n²+16n+4)]/2,     r2 = [2-n + √(n²+16n+4)]/2

 

We see clearly that   r1 < 0 always .  So  0 ≤ r2 ≤ 4

     2 - n   < √(n²+16n+4)

If  2-n < 0, then this condition is satisfied directly.

If  2-n ≥ 0, then   n²-4n+4 < n²+16n+4
            or   n > 0  ie.,  m < 0

 

Now r2:  0 ≤   [2-n + √(n²+16n+4)]/2  ≤  4
              n-2  ≤  √(n²+16n+4)  ≤  n+6

The left side condition is always satisfied.

     Then  n²+16n+4 ≤ n²+12n+36

    =>  4 n ≤ 32  or   n ≤ 8  or  -8 ≤ m ≤ 0

 

So the integer values of m are  [-8, -1].


kvnmurty: click on red heart thanks above
Similar questions