please answer this question
Attachments:
Answers
Answered by
0
x + (1/x) = 5 ——> 1
Cubing on both sides,
(x + (1/x))^3 = 5^3
x^3 + 3*x^2*(1/x) + 3*x*(1/x)^2 + (1/x)^3 = 125
x^3 + 3*x + 3*(1/x) + (1/x)^3 = 125
x^3 + (1/x)^3 + 3*x + 3*(1/x) = 125
x^3 + (1/x)^3 + 3*(x + (1/x)) = 125
x^3 + (1/x)^3 + 3*(5) = 125 [From 1]
x^3 + (1/x)^3 + 15 = 125
x^3 + (1/x)^3 = 125 - 15 = 110
x^3 + (1/x)^3 = 110 ——> Answer
Cubing on both sides,
(x + (1/x))^3 = 5^3
x^3 + 3*x^2*(1/x) + 3*x*(1/x)^2 + (1/x)^3 = 125
x^3 + 3*x + 3*(1/x) + (1/x)^3 = 125
x^3 + (1/x)^3 + 3*x + 3*(1/x) = 125
x^3 + (1/x)^3 + 3*(x + (1/x)) = 125
x^3 + (1/x)^3 + 3*(5) = 125 [From 1]
x^3 + (1/x)^3 + 15 = 125
x^3 + (1/x)^3 = 125 - 15 = 110
x^3 + (1/x)^3 = 110 ——> Answer
Similar questions
Computer Science,
6 months ago
English,
6 months ago
English,
6 months ago
Social Sciences,
1 year ago