Math, asked by saadiahzaafirah1310, 10 months ago

please answer this question​

Attachments:

Answers

Answered by Anonymous
3

Solution :-

4sinθ = 3

⇒ sinθ = 3/4 = Perpendicular/Hypotenuse

Comparing on both sides

  • Perpendicular = 3
  • Hypotenuse = 4

By pythagoras theorem

⇒ (Perpendicular)² + (Base)² = (Hypotenuse)²

⇒ 3² + (Base)² = 4²

⇒ 9 + (Base)² = 16

⇒ (Base)² = 16 - 9

⇒ Base = √7

 \sf \sqrt{ \dfrac{cosec^{2} \theta - cot^{2} \theta  }{sec ^{2} \theta - 1 } }  + 2cot \theta =  \dfrac{ \sqrt{7} }{x}  + cos \theta

 \implies \sf \sqrt{ \dfrac{1 }{tan ^{2} \theta } }  + 2cot \theta =  \dfrac{ \sqrt{7} }{x}  + cos \theta

 \implies \sf \sqrt{  \bigg(\dfrac{1 }{tan \theta }  \bigg)^{2} }  + 2cot \theta =  \dfrac{ \sqrt{7} }{x}  + cos \theta

 \implies \sf \dfrac{1 }{tan \theta }   + 2cot \theta =  \dfrac{ \sqrt{7} }{x}  + cos \theta

 \implies \sf cot \theta    + 2cot \theta =  \dfrac{ \sqrt{7} }{x}  + cos \theta

 \implies \sf 3cot \theta =  \dfrac{ \sqrt{7} }{x}  + cos \theta

Required trignometric ratios :

  • cosθ = Base/Hypotenuse = √7/4
  • cot θ = Base/Perpendicular = (√7/4) / (3/4) = √7/3

Now substituting the values

 \implies \sf 3 \bigg( \dfrac{ \sqrt{7} }{3} \bigg)  =  \dfrac{ \sqrt{7} }{x}  +  \dfrac{ \sqrt{7} }{4}

 \implies \sf \sqrt{7}   =  \dfrac{ \sqrt{7} }{x}  +  \dfrac{ \sqrt{7} }{4}

 \implies \sf \sqrt{7}  -  \dfrac{ \sqrt{7} }{4}   =  \dfrac{ \sqrt{7} }{x}

 \implies \sf  \dfrac{4 \sqrt{7}  -  \sqrt{7} }{4}   =  \dfrac{ \sqrt{7} }{x}

 \implies \sf  \dfrac{3 \sqrt{7} }{4}   =  \dfrac{ \sqrt{7} }{x}

 \implies \sf  \dfrac{x}{4}   =  \dfrac{ \sqrt{7} }{ 3 \sqrt{7}  }

 \implies \sf  \dfrac{x}{4}   =  \dfrac{1 }{ 3}

 \implies \boxed{  \sf x   =  \dfrac{4 }{ 3}  }

Hence the value of x is 4/3.

Similar questions