Please answer this question
-
Attachments:
Answers
Answered by
0
Answer---> (4) -2 /√( 1-x² ) , is correct option
To find --->
d/dx { Cos⁻¹x + Sin⁻¹ √(1 - x² ) }
Solution---> First we find value of Sin⁻¹√(1 - x²)
y = Sin⁻¹√(1 - x²)
Let x = Cosθ => θ = Cos⁻¹x
y = Sin⁻¹√(1 - Cos²θ )
We know that , 1 - Cos²θ = Sin²θ
y = Sin⁻¹√Sin²θ
= Sin⁻¹ ( Sinθ )
= θ
= Cos⁻¹x
So, Sin⁻¹√(1 - x²) = Cos⁻¹x
Now returning to the original problem
d/dx { Cos⁻¹x + Sin⁻¹√1 - x² }
Putting , Sin⁻¹√( 1 - x² ) = Cos⁻¹ x , we get,
= d/dx ( Cos⁻¹x + Cos⁻¹x )
= d/dx ( 2 Cos⁻¹ x )
= 2 d / dx ( Cos⁻¹x )
We know that
d/dx ( Cos⁻¹x ) = - 1 /√(1 - x²) , applying it here , we get
= 2 { - 1 / √(1 - x²) }
= -2 / √( 1 - x² )
Similar questions
Hindi,
5 months ago
Math,
5 months ago
Business Studies,
10 months ago
Social Sciences,
10 months ago
History,
1 year ago