Physics, asked by srikanthdindukurthi, 1 year ago

please answer this question​

Attachments:

Answers

Answered by ShivamKashyap08
14

Answer:

  • Velocity (v) of Projection is (g/2a).

Given:

  1. Equation of Trajectory:- y = ax².

Explanation:

\rule{300}{1.5}

We Know From Equation of Trajectory of Projectile.

\large\bigstar \: {\boxed{\tt y = x(Tan \theta ) + \Bigg(\dfrac{g}{2u^2 Cos^2 \theta}\Bigg)x^2}}

\bold{Here}\begin{cases}\text{x Denotes Horizontal Distance} \\ \text{y Denotes Vertical Distance} \\ \theta \text{ Denotes Angle of projection}\end{cases}

\large{\boxed{\tt y = x(Tan \theta ) + \Bigg(\dfrac{g}{2u^2 Cos^2 \theta}\Bigg)x^2}}

Comparing with the given Equation.

\large{\tt \leadsto y = x(Tan \theta ) + \Bigg(\dfrac{g}{2u^2 Cos^2 \theta}\Bigg)x^2}

\large{\tt \leadsto y = ax^2}

We get,

\large\star \: {\tt (Tan \theta) = 0 \: -----(1)}

\large \star \: {\tt \dfrac{g}{2u^2 Cos^2 \theta} = a \: ----(2)}

\rule{300}{1.5}

\rule{300}{1.5}

Taking Equation (2).

\large \star \:{\underline{\underline{\tt \dfrac{g}{2u^2 Cos^2 \theta} = a }}\: \tt ----(2)}

\large{\tt \leadsto \dfrac{g}{2u^2 Cos^2 \theta} = a}

  • We know, Cos θ = 1/Sec θ

\large{\tt \leadsto \dfrac{g \times Sec^2 \theta}{2u^2} = a}

  • From Trigonometric identity Sec² θ = 1 + Tan² θ.

\large{\tt \leadsto \dfrac{g \times (1 + Tan^2 \theta)}{2u^2} = a}

Substituting Tan θ value From Equation (1).

\large{\tt \leadsto \dfrac{g \times (1 + 0)}{2u^2} = a}

\large{\tt \leadsto \dfrac{g \times 1}{2u^2} = a}

\large{\tt \leadsto \dfrac{g}{2u^2} = a}

\large{\tt \leadsto g = a \times 2u^2}

\large{\tt \leadsto 2u^2 =  \dfrac{g}{a}}

\large{\tt \leadsto u^2 =  \dfrac{g}{2a}}

\large\leadsto{\underline{\boxed{\red{\tt u = \sqrt{\dfrac{g}{2a}}}}}}

Velocity (v) of Projection is √(g/2a) [Option- 4].

\rule{300}{1.5}

Similar questions