Math, asked by educationmaster37, 11 months ago

please answer this question​

Attachments:

Answers

Answered by Anonymous
16

Given :

  • α and β are the zeroes of the polynomial : - 5x + 6

To Find :

  • The polynomial whose zeroes are : 1/α and 1/β

Solution :

Let's first find the roots of the equation : - 5x + 6

\mathtt{x^2\:-5x\:+\:6=0}

\mathtt{x^2\:-\:3x\:-\:2x+6=0}

\mathtt{x(x-3)\:\:-2(x-3)\:=0}

\mathtt{(x-3)\:\:(x-2)\:=0}

\mathtt{x-3=0\:\:or\:\:x-2=0}

\mathtt{x=3\:\:or\:\:x=2}

\large{\boxed{\mathtt{\blue{Roots\:of\:the\:equation\:are\:2,3}}}}

Finding the polynomial :

Let,

  • α = 2
  • β = 3

Given that, the zeroes of the polynomial is 1/α and 1/β.

✪ In the zeroes of the polynomial, substitute appropriate value of α and β.

° Zeroes are :

  • \mathtt{\dfrac{1}{2}}

  • \mathtt{\dfrac{1}{3}}

Sum of the zeroes :

α + β = \mathtt{\dfrac{1}{2}\:+\:{\dfrac{1}{3}}}

\mathtt{\dfrac{3+2}{6}}

\mathtt{\dfrac{5}{6}} ____(1)

Product of zeroes :

αβ = \mathtt{\dfrac{1}{2}\:\times\:{\dfrac{1}{3}}}

\mathtt{\dfrac{1}{6}} ____(2)

✪ We can form quadratic polynomial using,

  • - (α + β)x + (αβ) = 0

From equation (1) and (2),

  • a = 6
  • b = 5
  • c = 1

Therefore the required polynomial is :-

\large{\boxed{\mathtt{\red{6x^2\:-\:5x\:+\:1\:=0}}}}

Answered by Anonymous
8

AnswEr :

\underline{\bigstar\:\textsf{According \: to \: given \: in \: question:}}

\:\bullet\:\sf\ Given \: polynomial : x^2 - 5x + 6

\normalsize\underline\mathfrak{Comaparing \: the \: polynomial :}

\normalsize\star\sf\ a = 1 \\ \normalsize\star\sf\ b = -5 \\ \normalsize\star\sf\ c = 6

 \rule{100}1

\normalsize \underline\mathfrak{Sum \: of \: zeroes :}

\normalsize\ : \implies\sf\ \alpha + \beta = \frac{-b}{a}

\normalsize\ : \implies\sf\ \alpha + \beta = \frac{-(-5)}{1}

\normalsize\ : \implies\sf\alpha + \beta = 5

\normalsize\ : \implies{\boxed{\sf{\alpha + \beta = 5}}}

\normalsize \underline\mathfrak{Product \: of \: zeroes :}

\normalsize\ : \implies\sf\ \alpha \beta = \frac{c}{a}

\normalsize\ : \implies\sf\ \alpha \times\ \beta = \frac{6}{1}

\normalsize\ : \implies\sf\alpha \times\ \beta = 6

\normalsize\ : \implies{\boxed{\sf{\alpha\beta = 6}}}

 \rule{100}1

\normalsize\underline\mathfrak{Now \: find \: the \: polynomial :}

\normalsize \underline\mathfrak{Sum \: of \: zeroes :}

\normalsize\ : \implies\sf\frac{1}{\alpha} + \frac{1}{\beta}

\normalsize\ : \implies\sf\frac{\alpha + \beta}{\alpha\beta} = \frac{5}{6}

\scriptsize\sf{\: \: \: \: \: \: \: \: \: [\red{Block \: the \: available \: values}]}

\normalsize\ : \implies{\boxed{\sf{\frac{1}{\alpha} + \frac{1}{\beta} = \frac{5}{6}}}}

\normalsize \underline\mathfrak{Product \: of \: zeroes :}

\normalsize\ : \implies\sf\frac{1}{\alpha} \times\ \frac{1}{\beta}

\scriptsize\sf{\: \: \: \: \: \: \: \: \: [\red{Block \: the \: available \: values}]}

\normalsize\ : \implies\sf\frac{1}{\alpha\beta} =  \frac{1}{6}

\normalsize\ : \implies{\boxed{\sf{\frac{1}{\alpha\beta} = \frac{1}{6}}}}

 \rule{100}1

\normalsize\star{\boxed{\sf{P(x) = k[x^2 - (\frac{1}{\alpha} + \frac{1}{\beta}) + \frac{1}{\alpha\beta}] }}}

\scriptsize\sf{\: \: \: \: \: \: \: \: \: [\purple{Block \: the \: available \: values}]}

\normalsize\ : \implies\sf\ k[x^2 - \frac{5}{6}x + \frac{1}{6}]

\normalsize\ : \implies\sf\ k[6x^2 - {5}x + 1]

\scriptsize\sf{\: \: \: \: \: \: \: \: \: [\purple{Here, \: k \: is \: constant,  \: so \:  k = 1 \: }]}

\normalsize\ : \implies\sf\ [6x^2 - {5}x + 1]

\normalsize\ : \implies{\underline{\boxed{\sf \green{P(x) = [6x^2 - {5}x + 1]}}}}

Similar questions