Physics, asked by miraculous3101, 11 months ago

Please answer this question ​

Attachments:

Answers

Answered by BendingReality
15

Answer:

\sf u=\sqrt{\dfrac{5}{2} \ gh}

Explanation:

We have equation of trajectory :

\sf y=x. \ \tan \theta-\dfrac{g \ x^2}{2 \ u^2 \ \cos^2 \theta}

Given a common point i.e. ( h , h ) :

\sf h=h. \ \tan \theta-\dfrac{g \ h^2}{2 \ u^2 \ \cos^2 \theta}

\sf 1=\tan \theta-\dfrac{g \ h}{2 \ u^2 \ \cos^2 \theta}

\sf u^2.\cos^2 \theta=\dfrac{g \ h}{2(\tan \theta -1)}

\sf u=\dfrac{1}{\cos \theta} .\sqrt{\dfrac{g \ h}{2(\tan \theta -1)}}

We know :

\sf H_{max} = R/2

Also :

H / R = tan Ф / 4

Putting H = R / 2 we get :

= > H / 2 H = tan Ф / 4

= > tan Ф = 2

We know :

tan = P / B

Finding cos Ф by applying Pythagoras' theorem :

cos Ф = 1 / √ 5

Putting value of cos Ф and tan Ф to find velocity :

\sf u=\dfrac{1}{1\sqrt{5}} .\sqrt{\dfrac{g \ h}{2(2 -1)}}

\sf u=\sqrt{5}.\sqrt{\dfrac{g \ h}{2(1)}}

\sf u=\sqrt{\dfrac{5}{2} \ gh}

Therefore we get required velocity .

Similar questions