Math, asked by swar36, 10 months ago

please answer this question ​

Attachments:

Answers

Answered by Anonymous
5

Question :

Find the value of x.

 {( \frac{7}{4} )}^{ - 3}  \times  { (\frac{7}{4} )}^{ - 5}  =  { (\frac{7}{4} )}^{x - 2}

Solution :

 {( \frac{7}{4} )}^{ - 3}  \times  { (\frac{7}{4} )}^{ - 5}  =  { (\frac{7}{4} )}^{x - 2}

 =  >  { (\frac{7}{4} )}^{ - 3 - 5}  =   { (\frac{7}{4} )}^{x - 2}  \\  =  >  - 3 - 5 = x - 2 \\  =  >  - 8 = x - 2 \\  =  >  - x =  - 2  + 8 \\  =  >  - x = 6 \\  =  > x =  - 6

Therefore ,the value of x is -6.

__________________________

More information :-

Some identities of Indices :

  •  {a}^{m} . {a}^{n}  =  {a}^{m + n}
  •  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}
  • ( {a}^{m})^{n}  =  {a}^{mn}
  •  {( \frac{a}{b}) }^{m}  =  \frac{ {a}^{m} }{ {b}^{m} }

_______________________

Answered by amitkumar44481
2

Question :

Find the value of x.

 \tt  \longmapsto  {(\dfrac{7}{4})}^{ - 3}  \times  { (\dfrac{7}{4}) }^{ - 5}  =  {(\dfrac{7}{4})}^{ x - 2}

AnsWer :

x = -6.

Solution :

We have, Equation.

 \tt  \longmapsto  {(\dfrac{7}{4})}^{ - 3}  \times  { (\dfrac{7}{4}) }^{ - 5}  =  {(\dfrac{7}{4})}^{ x - 2}

 \tt\longmapsto   {m}^{a}  \times  {m}^{b}  =  {m}^{a + b}

Note : Base value of LHS and RHS same then power be added.

\rule{90}1

 \tt \longmapsto   - 3 + ( - 5) = x - 2.

 \tt \longmapsto   - 3 - 5 = x - 2.

 \tt \longmapsto   - 8= x - 2.

 \tt \longmapsto    - 6= x .

 \tt \longmapsto x  =  - 6.

Therefore, the value of be -6.

Some Properties.

  • a^x * a^y = a^x+y.
  • a^x/a^y = a^x-y.
  • (a^x)^y = ( a )^xy => a^xy
Similar questions