Please answer this question.
Answers
Answer:
(NOTE: WE TOOK X INSTEAD OF A)
x⁴ + 1/x⁴ = 119
=> x⁴ + 1/x⁴ + 2 = 121
=> (x² + 1/x²) ² = 11²
=> x² + 1/x² = 11 , ignore the negative value as LHS is +ve.
=> x² + 1/x² - 2 = 9
=> (x - 1/x)² = 3²
=> x - 1/x = +3 or -3
=> (x - 1/x)³ = x³ - 1/x³ - 3 x * 1/x * (x - 1/x)
(+ 3) ³ = x³ - 1/x³ - 3 ( + 3)
Answer: x³ - 1/x³ = 3³ + 9 or -30 - 9 = + 36
Answer:
36
Step-by-step explanation:
⇒ a^4 + 1 / a^4 = 119
Adding 2 on both sides
⇒ a^4 + 1 / a^4 + 2 = 119 + 2
⇒ a⁴ + 1 / a⁴ + 2( a² * 1 / a² ) = 121
Using a⁴ + b⁴ + 2a²b² = ( a² + b² )²
⇒ ( a² + 1 / a² )² = 121
⇒ a² + 1 / a² = 11
Adding - 2 on both sides:
⇒ a² + 1 / a² - 2 = 11 - 2
⇒ a² + 1 / a² - 2( a * 1 / a) = 9
⇒ ( a - 1 / a )² = 9
⇒ ( a - 1 / a ) = 3
Cubing both sides:
⇒ ( a - 1 / a )³ = 3³
⇒ a³ - 1 / a³ - 3( a*1/a )( a - 1 / a ) = 27
⇒ a³ - 1 / a³ - 3( 1 )( 3 ) = 27
⇒ a³ - 1 / a³ - 9 = 27
⇒ a³ - 1 / a³ = 27 + 9
⇒ a³ - 1 / a³ = 36