please answer this question.!
Answers
Given :-
- m = tanA + sin A
- n = tanA - sin A
To Prove :-
Solution
Taking LHS Firstly ,
→ LHS = m² - n²
We know that a²-b² = (a+b)(a-b) , Using this identity
→ m²-n² = (m+n)(m-n)
Putting the values of m and n here
→
→
→ LHS = 4 tanA sinA
Now taking the RHS .
→
Here also putting the value of m and n .
→
Here also we'll use the identity a²-b² = (a+b)(a-b)
→
Now writing tan theta in form of sin and cos.
→
Taking sin common from here .
→
Now we know that 1 - cos²A = sin²A.
→
→
→ RHS = 4 sinA. tanA
So LHS = RHS = 4 sinA. tanA .
Hence proved .
GIVEN:
- tanA + sinA = m ----------( 1 )
- tanA - sinA = n -------- ( 2 )
TO PROVE:
- m² - n² = 4√mn
SOLUTION:
Taking equation 1 & squaring on both sides
(tanA + sinA)² = m²
Assuming as equation 3
Taking equation 2 & squaring on both sides
(tanA - sinA)² = n²
Assuming as equation 4
Now,
Equation 3 - Equation 4
→ (tanA + sinA)² - (tanA - sinA)² = m² - n²
Using algebraic identity
(a + b)² - (a - b)² = 4ab
→ 4tanA.sinA
m² - n² = 4√mn = 4tanA.sinA
Taking ‘ 4√mn ’
Substituting the values of m & n
→ 4√(tanA + sinA)(tanA - sinA)
Simplifying using algebraic identity
(a + b)(a - b) = a² - b²
→ 4√(tan²A - sin²A)
We know that
tanA = sinA/cosA
→ 4√(sin²A/cos²A - sin²A)
→ 4√(sin²A - sin²A.cos²A/cos²A)
→ 4√[sin²A(1 - cos²A)/cos²A]
→ 4√[sin⁴A/cos²A]
→ 4√[sin²A × sin²A/cos²A]
→ 4√[sinA × tanA]²
→ 4sinA.tanA
Now comparing with ‘4tanA.sinA’
4sinA.tanA = 4tanA.sinA
LHS = RHS
Hence proved