Please answer this question
Answers
1).We have,
∠2 = ∠4 [Vertically opposite angle]
and, ∠4 = ∠6 [Alternate angles]
∠2 = ∠4 = ∠6
Now, ∠2 - ∠4
➟ 2x + 30 = x + 2y
➟ 2x - x - 2y + 30 = 0
➟ x - 2y + 30 = 0 ..... (i)
and, ∠4 = ∠6
➟ (x + 2y) = (3y + 10)
➟ x - y - 10 = 0 ..... (ii)
Substituting (ii) from (i) we get
➟ (x - 2y + 30) - (x - y - 10) = 0
➟ -y + 40 = 0
➟ y = 40
Putting y = 40 in (ii), we get x = 50.
So,
∠4 = (x + 2y)° = (50 + 2 × 40)° = 130°
But,
➟ ∠4 + ∠5 = 180°
➟ 130° + ∠5 = 180°
➟ ∠5 = 180° - 130°
➟ ∠5 = 50°
━━━━━━━━━━━━━━━━━━━━━━━━━━
2.) We have,
Complement of ∠5 = Supplement of ∠4
➟ 90°- ∠5 = 180° - ∠4
➟ 90° - ∠5 = 180° - (180° - ∠5)[∠4 + ∠5
= 180°]
[∠4 = 180° - ∠5]
➟ 90° - ∠5 = ∠5
➟ 2∠5 = 90°
➟ ∠5 = 45°
•°• ∠4 + ∠5 = 180°
➟ ∠4 + 45° = 180°
➟ ∠4 = 135°