PLEASE ANSWER THIS QUESTION..
Answers
Step-by-step explanation:
2).When f(x) is divided by (x+1) and (x-1) , the remainders are 19 and 5 respectively .
∴ f(-1) = 19 and f(1) = 5
⇒ (-1)4 - 2 (-1)3 + 3(-1)2 - a (-1) + b = 19
⇒ 1 +2 + 3 + a + b = 19
∴ a + b = 13 ------- (i)
Again , f(1) = 5
⇒ 14 - 2 × 13 + 3 × 12 - a × 1 b = 5
⇒ 1 - 2 + 3 - a + b = 5
∴ b - a = 3 ------ (ii)
solving eqn (i) and (ii) , we get
a = 5 and b = 8
Now substituting the values of a and b in f(x) , we get
∴ f(x) = x4 - 2x3 + 3x2 - 5x + 8
Now f(x) is divided by (x-3) so remainder will be f(3)
∴ f(x) = ∴ f(x) = x4 - 2x3 + 3x2 - 5x + 8
⇒ f(3) = 34 - 2 × 33 + 3 × 32 - 5 × 3 + 8
= 81 - 54 + 27 - 15 + 8 = 47
3)(x-1) and (x+1) are factors of the given polynomial.
x-1 = 0. ; x+1 = 0
x = 1. ; x = -1
Put x= -1,1 to find a and b
First,put x = 1
ax³+x²-2x+b = 0
a(1)³+(1)²-2(1)+b=0
a+1-2+b=0
a+b-1 = 0
a+b = 1 --------(1)
Put x = -1
a(-1)³+(-1)²-2(-1)+b = 0
a(-1)+1+2+b = 0
-a+b+3 = 0
-a+b = -3 -------(2)
(1)+(2)
a+b = 1
-a+b=-3
-----------
2b = -2
b = -2/2
b = -1
Put b= -1 in (1)
a+(-1) = 1
a-1 = 1
a=1+1
a=2
Therefore, a = 2 and b = -1