Math, asked by Knight17, 10 months ago

Please answer this question ......... ​

Attachments:

Answers

Answered by SrijanShrivastava
1

  I=  \: _{0}∫^{ ln(13) }  (\frac{ {e}^{x}  \sqrt{ {e}^{x} - 1 } }{ {e}^{ x} + 3 } ) \: dx

Let,

 \sqrt{e {}^{x} - 1 }  = u

u  {}^{2} = e {}^{x}  - 1

2u \: du = {e}^{x} \:  dx

.

Now,

I =  2 \:.   \: _0∫^{ ln(13)  } ( \frac{ {u}^{2} }{ {u}^{2}  + 4} )du

I = 2 \: . \:  _0∫^{ ln(13) } ( \frac{( {u}^{2}  + 4) - 4}{( {u }^{2}  + 4)} )du

 = 2 \: . (_{2} ∫ ^{ ln(13)  } du \:   -   4  \: . \: \:  _{0}∫^{2 \sqrt{3} }  \frac{du}{ {u}^{2} + 4 } )

=   2( \sqrt{ {e}^{x}  - 1} )|_{0} ^{ ln(13)  }   - \frac{8}{2}  \:  \tan { }^{ - 1} ( \frac{ \sqrt{ {e}^{x}  - 1} }{2} ) |_{0} ^{ ln(13)  }

= 2( \sqrt{ {e}^{ ln(13) } - 1 }  -  \sqrt{  {e}^{0}  - 1} ) - 4 \:  \tan^{  - 1} ( \frac{ \sqrt{ {e}^{ ln(13)  } - 1 } }{2} )  - 4 \tan {}^{ - 1} (0)

 I= 2 \sqrt{12}  - 4 \tan ^{ - 1} ( \sqrt{3} )

 I= 2 \sqrt{12}  - 4 \frac{\pi}{3}

Similar questions