please answer this question
Answers
TO FIND :–
SOLUTION :–
• Let's take L.H.S. –
• We should write this as –
• Using identity –
• So that –
Answer:
SOLUTION :–
• Let's take L.H.S. –
\begin{gathered} \\ \: \: = \: \: { \bold{ \sin^{6} ( \theta) + \cos^{6} ( \theta) }} \\ \end{gathered}
=sin
6
(θ)+cos
6
(θ)
• We should write this as –
\begin{gathered} \\ \: \: = \: \: { \bold{ \{ \sin^{2} ( \theta) \}^{3} + \{ \cos^{2} ( \theta) \}^{3}}} \\ \end{gathered}
={sin
2
(θ)}
3
+{cos
2
(θ)}
3
• Using identity –
\begin{gathered} \\ \dashrightarrow \:{ \bold{ {(a + b)}^{3} = \: \: a^{3} +b^{3} + 3ab(a + b)}} \\ \end{gathered}
⇢(a+b)
3
=a
3
+b
3
+3ab(a+b)
\begin{gathered} \\ \dashrightarrow \:{ \bold{ a^{3} +b^{3} = {(a + b)}^{3} - 3ab(a + b)}} \\ \end{gathered}
⇢a
3
+b
3
=(a+b)
3
−3ab(a+b)
• So that –
\begin{gathered} \\ \: \: { \bold{ = \: \: \{ \sin^{2} ( \theta) + \cos^{2} ( \theta) \}^{3} - 3 \: { \sin}^{2} \theta. { \cos}^{2} \theta ( \sin^{2} \theta + \cos^{2} \theta)}} \\ \end{gathered}
={sin
2
(θ)+cos
2
(θ)}
3
−3sin
2
θ.cos
2
θ(sin
2
θ+cos
2
θ)
\begin{gathered} \\ \: \: \because \: \: { \bold{ \sin^{2} ( \theta) + \cos^{2} ( \theta) = 1}} \\ \end{gathered}
∵sin
2
(θ)+cos
2
(θ)=1
\begin{gathered} \\ \: \: \therefore \: \: { \bold{ = \: \: \{1 \}^{3} - 3 \: { \sin}^{2} \theta. { \cos}^{2} \theta (1)}} \\ \end{gathered}
∴={1}
3
−3sin
2
θ.cos
2
θ(1)
\begin{gathered} \\ \: \: { \bold{ = \: \: 1- 3 \: { \sin}^{2} \theta { \cos}^{2} \theta }} \\ \end{gathered}
=1−3sin
2
θcos
2
θ
\begin{gathered} \\ \: \: { \bold{ = \: \:R.H.S. }} \\ \end{gathered}
=R.H.S.