Math, asked by harshlodam, 10 months ago

Please answer this question​

Attachments:

Answers

Answered by karankirat345
1

\color{magenta}\large\underline{\underline{Hello}}

\color{blue}\large\underline{\underline{Answer:}}

1.

(x) + (x + 7) + (x + 14) = 5x - 7 \\ 3x + 21 = 5x - 7 \\ 21 + 7 = 5x  -  3x \\ 28 = 2x \\ x =  \frac{28}{2}  \\ x = 14

\color{green}\large\underline{\underline{Multiples:}}

x = 14

x + 7 = 14 + 7 = 21

x + 14 = 14 + 14 = 28

2.

10x + y = 9 \\ 10y + 9 = 10x + y - 9 \\ 10y - y - 10x =  - 9 - 9 \\  - 10x + 9y =  - 18 \\  \\ 10x + y = 9 \:  \:  \:  \:  \:(a)  \\  - 10x + 9y =  - 18 \:  \:  \:   \:  \:  \:(b) \\  \\ (a)  +  (b) \\  10x + y - 10x + 9y = 9 - 18 \\ 10y =  - 9 \\ y =  \frac{ - 9}{10}  \\  \\ put \: in \: (a) \\  \\ 10x  -  \frac{9}{10}  = 9 \\ 10x = 9 +  \frac{9}{10}  =  \frac{99}{10}  \\ x =  \frac{ \frac{99}{10} }{10}  =  \frac{99}{100}  \\  \\ original \: no. = 10x + y \\  = 10( \frac{99}{100} ) -  \frac{9}{10}  =  \frac{99}{10}  -  \frac{9}{10}  \\   = \frac{90}{10}  \\  = 9

\color{red}\large\underline{\underline{Be... Brainly...!!!}}

Answered by shadowsabers03
9

1.

Let the three consecutive multiples of 7 be \sf{x-7,\ x} and \sf{x+7.}

Sum of these three numbers is 7 less than five times the first number.

\longrightarrow\sf{(x-7)+x+(x+7)=5(x-7)-7}

\longrightarrow\sf{x-7+x+x+7=5x-35-7}

\longrightarrow\sf{3x=5x-42}

\longrightarrow\sf{5x-3x=42}

\longrightarrow\sf{2x=42}

\longrightarrow\sf{x=\dfrac{42}{2}}

\longrightarrow\underline{\underline{\sf{x=21}}}

\longrightarrow\sf{\underline{\underline{x-7=14}}}

\longrightarrow\sf{\underline{\underline{x+7=28}}}

Hence the three consecutive multiples are 14, 21 and 28.

2.

Let the tens digit of the number be \sf{x,} then ones digit will be \sf{9-x.}

Then the two digit number becomes,

  • \sf{10x+(9-x)=9x+9}

The number formed on reversing the digits becomes,

  • \sf{10(9-x)+x=90-9x}

The new number is 9 less than the original number.

\longrightarrow\sf{90-9x=(9x+9)-9}

\longrightarrow\sf{90-9x=9x+9-9}

\longrightarrow\sf{90-9x=9x}

\longrightarrow\sf{9x+9x=90}

\longrightarrow\sf{18x=90}

\longrightarrow\sf{x=\dfrac{90}{18}}

\longrightarrow\sf{x=5}

The original number is,

\longrightarrow\sf{9x+9=9\times5+9}

\longrightarrow\sf{9x+9=45+9}

\longrightarrow\underline{\underline{\sf{9x+9=54}}}

Hence 54 is the original number.

Similar questions