please answer this question
Answers
Answer:
Thus
Answer :
(a + b)² = 100
Solution :
• Given : a = (√3 - √2)/(√3 + √2)
b = (√3 + √2)/(√3 - √2)
• To find : (a + b)² = ?
We have ;
a = (√3 - √2)/(√3 + √2)
Rationalising the denominator , we have ;
=> a = (√3-√2)(√3-√2) / (√3+√2)(√3-√2)
=> a = (√3 - √2)²/ [ (√3)² - (√2)² ]
=> a = (√3 - √2)² / (3 - 2)
=> a = (√3 - √2)² / 1
=> a = (√3 - √2)²
=> a = (√3)² - 2×√3×√2 + (√2)²
=> a = 3 - 2√6 + 2
=> a = 5 - 2√6
Also ,
b = (√3 + √2)/(√3 - √2)
Rationalising the denominator , we have ;
=> b = (√3+√2)(√3+√2) / (√3-√2)(√3+√2)
=> b = (√3 + √2)²/ [ (√3)² - (√2)² ]
=> b = (√3 + √2)² / (3 - 2)
=> b = (√3 + √2)² / 1
=> b = (√3 + √2)²
=> b = (√3)² + 2×√3×√2 + (√2)²
=> b = 3 + 2√6 + 2
=> b = 5 + 2√6
Now ,
=> a + b = 5 - 2√6 + 5 + 2√6
=> a + b = 10
Now ,
Squaring both the sides , we get ;
=> (a + b)² = 10²
=> (a + b)² = 100