Math, asked by niteshshaw723, 8 months ago

please answer this question ​

Attachments:

Answers

Answered by Anonymous
3

ax _a² +bx _b²

____________ = 2

x² _ax _bx +ab

ax _ a² +bx _b² = 2x² _2ax _ 2bx +2ab

2x² +a² + b² _3ax _3bx +2ab =0

Answered by Anonymous
6

</p><p></p><p> \bf \implies \:  \frac{a(x - a) + b(x - b)}{(x - b)(x - a)}  = 2 \\  \bf \implies \frac{ax -  {a}^{2}  + bx -  {b}^{2} }{(x - a)(x - b)}  = 2 \\  \bf \implies \: ax -   {a}^{2}  + bx -  {b}^{2}  = 2(x - a)(x - b) \\  \bf \implies ax -  {a}^{2}  + bx -  {b}^{2}  = 2( {x}^{2}  - ax - bx + ab) \\  \bf \implies \: ax  + bx -  {a}^{2}     -  {b}^{2} = 2 {x}^{2}  - 2ax - 2bx + 2ab \\  \bf \implies \: 2 {x}^{2}  - 3ax - 3bx + 2ab +  {a}^{2}  +  {b}^{2}  = 0  \\  \bf \implies \: 2x - 3x(a + b) +  {(a + b)}^{2}  = 0  \\  \bf \implies \: 2 {x}^{2}  - 2x(a  + b) - x(a + b) +  {(a + b)}^{2}  = 0  \\  \bf \implies \: 2x [x - (a + b) \: ] - (a + b)[x - (a + b)] \:  = 0 \\  \bf \implies \: [2x - (a + b)][x - (a + b)] \:  = 0 \\  \bf \implies \: 2x = a + b \\  \bf \implies  x =  \frac{a + b}{2}

Similar questions