Math, asked by niteshshaw723, 6 months ago

please answer this question ​

Attachments:

Answers

Answered by adbadwaik
2

i am tried of brainly

this is my last last answer

Let the first term is a and the common difference is d

By using S  

n

​  

=  

2

n

​  

[2a+(n−1)d] we have,

S  

5

​  

=  

2

5

​  

[2a+(5−1)d]=  

2

5

​  

[2a+4d]

S  

7

​  

=  

2

7

​  

[2a+(7−1)d]=  

2

7

​  

[2a+6d]

Given: S  

7

​  

+S  

5

​  

=167

∴  

2

5

​  

[2a+4d]+  

2

7

​  

[2a+6d]=167

⇒10a+20d+14a+42d=334

⇒24a+62d=334       ...(1)

S  

10

​  

=  

2

10

​  

[2a+(10−1)d]=5(2a+9d)

Given: S  

10

​  

=235

So 5(2a+9d)=235

⇒2a+9d=47       ...(2)

Multiply equation (2) by 12, we get

24a+108d=564....(3)

Subtracting equation (3) from (1), we get

−46d=−230

∴d=5

Substing the value of d=5 in equation (1) we get

2a+9(5)=47 or 2a=2

∴a=1

Then A.P is 1,6,11,16,21,⋯

Answered by bishtsmita06
1

Step-by-step explanation:

S₅+S₇=167 and S₁₀=235

Now, Sₙ=n/2{2a+(n-1)d}

∴S₅+S₇=167

⇒5/2{2a+4d}+7/2{2a+6d}

⇒5a+10d+7a+21d=167

⇒12a+31d=167              ..... (1)

Also ,  S₁₀=235

∴10/2{2a+9d}=235

⇒10a+45d=235

⇒2a+9d=47                     .....(2)

Multiplying equation (2) by 6, we get

12a+54d=282                  .....(3)

subracting (1) from (3) we get

         12a+54d=282

    (-)  12a+31d=167  

         -      -       -

        -----------------------

                 23d=115

        --------------------------

∴d=5

substituting value of d in (2), we have

2(a)+9(5)=47

⇒2a+45=47

⇒2a=2

⇒a=1

Thus AP is 1 , 6 , 11 , 16.........

Similar questions