Math, asked by niteshshaw723, 7 months ago

please answer this question ​

Attachments:

Answers

Answered by victorstafford82487
1

Answer:

math is tuff but not impossible

Answered by MaIeficent
6

Step-by-step explanation:

Question:-

The sum of first q terms of A.P is 63q−3q² . If its pth term is -60, Find the value of p. Also, find the 11th term of this AP

Solution:-

\sf The\: sum \: of \:  first \: q \: terms = 63q - 3q^{2}

\sf  \longrightarrow S_{q}= 63q - 3q^{2}

\sf  \longrightarrow S_{1}= 63(1) - 3(1)^{2}

\sf  \longrightarrow S_{1}= 60 = a_{1}

\sf Substituting \: 2 \: in \: the \: place \: of \: q

\sf  \longrightarrow S_{2}= 63(2) - 3(2)^{2}

\sf  \longrightarrow S_{2}= 126 - 12

\sf  \longrightarrow S_{2}= 114 = a_{1} + a_{2}

\sf  \longrightarrow a_{2} = S_{2} - S_{1}

\sf  \longrightarrow a_{2} = 114 - 60 = 54

Common difference = Second term - first term

\sf  \longrightarrow d = a_{2} - a_{1}

\sf  \longrightarrow d = 54 - 60 = -6

\sf Given, \: pth \: term = -60

\sf \longrightarrow a_{p} = -60

\sf \longrightarrow a + (p - 1)d = -60

\sf \longrightarrow 60 + (p - 1)(-6)= -60

\sf \longrightarrow (p - 1)(-6) = -60 -60

\sf \longrightarrow p - 1 = \dfrac{-120}{-6}

\sf \longrightarrow p - 1 = 20

\sf \longrightarrow p=  20 + 1 = 21

\underline{\boxed{\sf \therefore The \: value \: of \: p = 21}}

\sf Now, \: let \: us \: find \: the \: 11th\: term

\sf a_{11} = a + 10d

\sf = 60 + 10(-60)

\sf = 60 - 60

\sf = 0

\underline{\boxed{\sf \therefore The \: 11th\: term = 0}}

Similar questions