please answer this question
Attachments:
Answers
Answered by
2
Answer:
ANSWER
Here,given
a=1
d=4−1=3
and,s
n
=287
Now,
s
n
=
2
n
(2a+(n−1)d)
⇒287=
2
n
(2×1+(n−1)3)
⇒287=
2
n
(2+3n−3)
⇒574=n(3n−1)
⇒574=3n
2
−n
⇒3n
2
−n−574=0
onsolvingthequadraticequatonusingformula
n=
2a
−b±
b
2
−4ac
Wegetn=14&
3
−41
[doesnotexist]
so,n=14
Now,
s
n
=
2
n
(a+1)
⇒287=
2
14
(1+x)
⇒574=14(1+x)
⇒(1+x)=
14
574
⇒1+x=41
⇒x=41−1
∴x=40
x=40isthesolution.
Answered by
25
x = 40
Answer:
Here,given
a=1
d=4−1=3
and, sn = 287
Now,
sn = n/2(2a+(n−1)d)
⇒287= n/2(2×1+(n−1)3)
⇒287= n/2(2+3n−3)
⇒574=n(3n−1)
⇒574=3n^2−n
⇒3n^2−n−574=0
onsolvingthequadraticequatonusingformula
n= 2a−b± b2−4ac
We get n = 14 &41/-3 [doesnotexist]
so,n=14
Now, sn = 2n(a+1)
⇒287 = 214 (1+x)
⇒574=14(1+x)
⇒(1+x)= 574/14
⇒1+x=41
⇒x=41−1
∴x=40
x=40is the solution.
HOPE YOU GET YOUR SOLUTION⛄
Similar questions
Computer Science,
2 months ago
English,
2 months ago
Social Sciences,
2 months ago
English,
6 months ago
Computer Science,
6 months ago
Biology,
10 months ago