Math, asked by niteshshaw723, 3 months ago

please answer this question ​

Attachments:

Answers

Answered by Anonymous
3

\huge\underline\mathfrak\green{❥︎ANSWER}

hope it helps you...☺☺

Attachments:
Answered by EthicalElite
8

Question :

 \sf \dfrac{(1+tan^{2} \theta)cot \theta}{cosec^{2} \theta} = tan\theta

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

To Prove :

  •  \sf \dfrac{(1+tan^{2} \theta)cot \theta}{cosec^{2} \theta} = tan\theta

⠀⠀ ⠀

Proof :

 \sf \underline{\boxed{\large \bf LHS}} = \dfrac{(1+tan^{2} \theta)cot \theta}{cosec^{2} \theta}

⠀⠀ ⠀

We know that :

  •  \large \underline{\boxed{\bf{1+tan^{2} \theta = sec^{2} \theta }}}

 \sf : \implies \underline{\bf LHS} = \dfrac{sec^{2} \theta cot \theta}{cosec^{2} \theta}

⠀⠀ ⠀

Now, we know that :

  •  \large \underline{\boxed{\bf{sec \theta = \dfrac{1}{cos \theta}}}}

  •  \large \underline{\boxed{\bf{cot \theta = \dfrac{cos \theta}{sin \theta}}}}

  •  \large \underline{\boxed{\bf{sec \theta = \dfrac{1}{sin \theta}}}}

 \sf : \implies \underline{\bf LHS} = \dfrac{\dfrac{1}{cos^{2} \theta} \times \dfrac{cos \theta}{sin \theta}}{\dfrac{1}{sin^{2} \theta}}

 \sf : \implies \underline{\bf LHS} = \dfrac{\dfrac{1}{cos\theta \times \cancel{cos \theta}} \times \dfrac{\cancel{cos \theta}}{sin \theta}}{\dfrac{1}{sin^{2} \theta}}

 \sf : \implies \underline{\bf LHS} = \dfrac{\dfrac{1}{cos\theta sin \theta}}{\dfrac{1}{sin^{2} \theta}}

 \sf : \implies \underline{\bf LHS} = \dfrac{1}{cos\theta sin \theta} \times sin^{2} \theta

 \sf : \implies \underline{\bf LHS} = \dfrac{1}{cos\theta \cancel{sin \theta}} \times \cancel{sin \theta} \times sin \theta

 \sf : \implies \underline{\bf LHS} = \dfrac{sin \theta}{cos \theta}

⠀⠀ ⠀

Now, we know that :

  •  \large \underline{\boxed{\bf{\dfrac{sin \theta}{cos \theta} = tan \theta}}}

 \sf : \implies \underline{ \bf LHS} = tan \theta

⠀⠀ ⠀

 \sf \underline{\boxed{\large \bf RHS}} = tan \theta

⠀⠀ ⠀

 \large \underline{\boxed{\sf As, \: LHS = RHS,}}

 \large \underline{\boxed{\sf Hence, \: proved.}}

Similar questions