Math, asked by rachanakrishna, 5 months ago

please answer this question​

Attachments:

Answers

Answered by aakash5228
1

Answer:

6

Step-by-step explanation:

On solving the brackets (x^2-9) will be cancelled and then you will have Lt 2x

putting the value of x

2x3=6

Answered by Asterinn
5

\rm \large \longrightarrow   \lim \limits_{ x\rightarrow3}( {x}^{2}  - 9) \bigg( \dfrac{1}{x + 3}  + \dfrac{1}{x  -  3} \bigg) \\  \\  \\  \\ \rm \large \longrightarrow   \lim \limits_{ x\rightarrow3}( {x}^{2}  - 9) \bigg( \dfrac{x - 3 + x + 3}{(x + 3)(x  -  3)}   \bigg)\\  \\ \\   \\ \rm \large \longrightarrow   \lim \limits_{ x\rightarrow3}( {x}^{2}  - 9) \bigg( \dfrac{x - 3 + x + 3}{(x + 3)(x  -  3)}   \bigg)\\  \\ \\   \\ \rm \large \longrightarrow   \lim \limits_{ x\rightarrow3}( {x}^{2}  - 9) \bigg( \dfrac{x + x}{ {x}^{2}  -  {3}^{2} }   \bigg)\\  \\ \\   \\ \rm \large \longrightarrow   \lim \limits_{ x\rightarrow3}( {x}^{2}  - 9) \bigg( \dfrac{2x}{ {x}^{2}  - 9 }   \bigg)\\  \\ \\   \\ \rm \large \longrightarrow   \lim \limits_{ x\rightarrow3}2x\\  \\ \\   \\ \rm \large \longrightarrow   2\lim \limits_{ x\rightarrow3}x\\  \\ \\   \\ \rm \large \longrightarrow   2 \times 3\\  \\ \\   \\ \rm \large \longrightarrow   6

Answer : 6

Similar questions