Math, asked by rachanakrishna, 5 months ago

please answer this question​

Attachments:

Answers

Answered by Asterinn
7

 \rm \displaystyle \longrightarrow \lim_{ \rm \: x \to \: 1}{ \rm \:  \dfrac{ \sqrt{3 + x}   - \sqrt{5 - x}}{ {x}^{2}  - 1} } \\  \\  \\  \\ \rm \displaystyle \longrightarrow \lim_{ \rm \: x \to \: 1}{  \bigg(\rm \:  \dfrac{ \sqrt{3 + x}   - \sqrt{5 - x}}{ {x}^{2}  - 1} } \times \rm \:  \dfrac{ \sqrt{3 + x}    +  \sqrt{5 - x}}{\sqrt{3 + x}    +  \sqrt{5 - x}}{ } \bigg)\\  \\  \\  \\ \rm \displaystyle \longrightarrow \lim_{ \rm \: x \to \: 1}{  \bigg(\rm \:  \dfrac{ {1}}{ {x}^{2}  - 1} } \times \rm \:  \dfrac{  {(\sqrt{3 + x})}^{2}      -   {(\sqrt{5 - x})}^{2} }{\sqrt{3 + x}    +  \sqrt{5 - x}}{ } \bigg)\\  \\  \\  \\ \rm \displaystyle \longrightarrow \lim_{ \rm \: x \to \: 1}{  \bigg(\rm \:  \dfrac{ {1}}{ {x}^{2}  - 1} } \times \rm \:  \dfrac{  3 + x     -   (5 - x) }{\sqrt{3 + x}    +  \sqrt{5 - x}}{ } \bigg)

\\  \\  \\   \rm \displaystyle \longrightarrow \lim_{ \rm \: x \to \: 1}{  \bigg(\rm \:  \dfrac{ {1}}{ {x}^{2}  - 1} } \times \rm \:  \dfrac{  3 + x     - 5  + x }{\sqrt{3 + x}    +  \sqrt{5 - x}}{ } \bigg) \\ \\  \\  \\   \rm \displaystyle \longrightarrow \lim_{ \rm \: x \to \: 1}{  \bigg(\rm \:  \dfrac{ {1}}{ {x}^{2}  - 1} } \times \rm \:  \dfrac{  2x     - 2  }{\sqrt{3 + x}    +  \sqrt{5 - x}}{ } \bigg) \\ \\  \\  \\   \rm \displaystyle \longrightarrow \lim_{ \rm \: x \to \: 1}{  \bigg(\rm \:  \dfrac{ {1}}{ ({x}- 1)(x + 1)} } \times \rm \:  \dfrac{  2(x     - 1) }{\sqrt{3 + x}    +  \sqrt{5 - x}}{ } \bigg)\\ \\  \\  \\   \rm \displaystyle \longrightarrow \lim_{ \rm \: x \to \: 1}{  \bigg(\rm \:  \dfrac{ {1}}{ (x + 1)} } \times \rm \:  \dfrac{  2 }{\sqrt{3 + x}    +  \sqrt{5 - x}}{ } \bigg)\\ \\  \\  \\   \rm \displaystyle \longrightarrow { \rm \:  \dfrac{ {1}}{ (1+ 1)} } \times \rm \:  \dfrac{  2 }{\sqrt{3 + 1}    +  \sqrt{5 - 1}}{ }\\ \\  \\  \\   \rm \displaystyle \longrightarrow { \rm \:  \dfrac{ {1}}{ 2} } \times \rm \:  \dfrac{  2 }{\sqrt{4}    +  \sqrt{4}}{ }\\ \\  \\  \\   \rm \displaystyle \longrightarrow { \rm } \dfrac{  1 }{\sqrt{4}    +  \sqrt{4}}\\ \\  \\  \\   \rm \displaystyle \longrightarrow { \rm } \dfrac{  1 }{2   + 2} \\ \\  \\  \\   \rm \displaystyle \longrightarrow { \rm } \dfrac{  1 }{4}

Therefore, correct answer = 1/4


Anonymous: Always welcome
Anonymous: No irreverent comment just appreciating other's or put your reveleant quire's please
5theking5: can u inbox m
5theking5: i need some help...
rachanakrishna: who
5theking5: kasaph
rachanakrishna: ok
Similar questions