please answer this question
Answers
☯ Question (1),
- What is the distance between point A and point B.
A(8,9) & B(14,17)
Applying distance formula,
d = √(x2 - x1)² + (y2 - y1)²
⇒ AB = √(14 - 8)² + (17 - 9)²
⇒ AB = √(6)² + (8)²
⇒ AB = √36 + 64
⇒ AB = √100
⇒ AB = 10 units (Option ii)
☯ Question 2,
- Point C is midpoint of arm AB, what are the coordinates of point C.
Applying midpoint formula,
(x, y) = (x1 + x2/2 , y1 + y2/2)
⇒ C(x , y) = (x1 + x2/2 , y1 + y2/2)
⇒ C(x , y) = (8 + 14/2 , 9 + 17/2)
⇒ C(x , y) = (22/2 , 26/2)
⇒ C(x , y) = (11 , 13) (Option i)
☯ Question 3,
- What is the distance between point A and point E.
A(8,9) & E(2, 1)
Applying distance formula,
d = √(x2 - x1)² + (y2 - y1)²
⇒ AE = √(2 - 8)² + (1 - 9)²
⇒ AE = √(-6)² + (-8)²
⇒ AE = √36 + 64
⇒ AE = √100
⇒ AE = 10 units (Option iii)
☯ Question 4,
- Point D is midpoint of arm AE, what are the coordinates of point D.
Applying midpoint formula,
(x, y) = (x1 + x2/2 , y1 + y2/2)
⇒ D(x , y) = (x1 + x2/2 , y1 + y2/2)
⇒ D(x , y) = (8 + 2/2 , 9 + 1/2)
⇒ D(x , y) = (10/2 , 10/2)
⇒ D(x , y) = (5 , 5) (Option i)
☯ Question 5,
- Which type of triangle is ABE.
⇒ Isosceles triangle (Option iii)
⠀
⠀
What is the distance between the point A & point B ?
⠀
⠀
Option ii) 10 unit
⠀
⠀
Applying Distance Formula,
⠀
d = √(x2 - x1)² + (y2 - y1)
→ AB = √(14 - 8)² + (17 - 9)²
→ AB = √(6)² + (8)²
→ AB = √36 + 64
→ AB = √100
→ AB = 10 unit
⠀
⠀
⠀
Point C is midpoint of arm AB, what are the coordinates of point C ?
⠀
⠀
Option i) (11, 13)
⠀
⠀
Applying Midpoint Formula,
⠀
(x, y) = (x1 + x2/2, y1 + y2/2)
→ C(x, y) = (x1 + x2/2, y1 + y2/2)
→ C(x, y) = (8 + 14/2, 9 + 17/2)
→ C(x, y) = (22/2, 26/2)
→ C(x, y) = (11, 13)
⠀
⠀
⠀
What is the distance between point A & point E ?
⠀
⠀
Option iii) 10 unit
⠀
⠀
Applying Distance Formula,
⠀
d = √(x2 - x1)² + (y2 - y1)²
→ AE = √(2 - 8)² + (1 - 9)²
→ AE = √(-6)² + (-8)²
→ AE = √36 + 64
→ AE = √100
→ AE = 10 unit
⠀
⠀
⠀
Point D is midpoint of arm AE, what are the coordinates of point D ?
⠀
⠀
Option i) (5, 5)
⠀
⠀
Applying Midpoint Formula,
⠀
(x, y) = (x1 + x2/2, y1 + y2/2)
→ D(x, y) = (x1 + x2/2, y1 + y2/2)
→ D(x, y) = (8 + 2/2, 9 + 1/2)
→ D(x, y) = (10/2, 10/2)
→ D(x, y) = (5, 5)
⠀
⠀
⠀
Which type of triangle is ABE ?
⠀
⠀
Option iii) Isosceles
⠀