Math, asked by rachanakrishna, 4 months ago

please answer this question​

Attachments:

Answers

Answered by Asterinn
9

 \rm  \implies\displaystyle \lim_{ \sf \: x \to0} \dfrac{{ \rm \sqrt{1 + x} -  \sqrt{1 +  {x}^{2} }  }}{ \rm \:x}

If we put x =0 in the given expression then we will get 0/0 form. Since 0/0 is indeterminate form , we will simplify the above expression :-

\rm  \implies\displaystyle \lim_{ \sf \: x \to0} \bigg( \dfrac{{ \rm \sqrt{1 + x} -  \sqrt{1 +  {x}^{2} }  }}{ \rm \:x}  \times \dfrac{{ \rm \sqrt{1 + x}  +   \sqrt{1 +  {x}^{2} }  }}{ \rm \rm \sqrt{1 + x}  +   \sqrt{1 +  {x}^{2} }} \bigg)

 \rm  \implies\displaystyle \lim_{ \sf \: x \to0}  \dfrac{{ \rm  {(\sqrt{1 + x} )}^{2}   -   {( \sqrt{1 +  {x}^{2} })}^{2}   }}{ \:  \:  \rm x (\rm \rm \sqrt{1 + x}  +   \sqrt{1 +  {x}^{2} } \: )}

 \rm \implies\displaystyle \lim_{ \sf \: x \to0}  \dfrac{{ \rm  {1 + x} -   {( 1  +  {x}^{2} } )  }}{ \:  \:  \rm x (\rm \rm \sqrt{1 + x}  +   \sqrt{1 +  {x}^{2} } \: )}

\rm\implies\displaystyle \lim_{ \sf \: x \to0}  \dfrac{{ \rm  {1 + x} -  1   - {x}^{2}    }}{ \:  \:  \rm x (\rm \rm \sqrt{1 + x}  +   \sqrt{1 +  {x}^{2} } \: )}

 \rm \implies\displaystyle \lim_{ \sf \: x \to0}  \dfrac{{ \rm  { x}    - {x}^{2}    }}{ \:  \:  \rm x (\rm \rm \sqrt{1 + x}  +   \sqrt{1 +  {x}^{2} } \: )}

 \rm \implies\displaystyle \lim_{ \sf \: x \to0}  \dfrac{{ \rm  { x} (1   - {x}   )}}{ \:  \:  \rm x (\rm \rm \sqrt{1 + x}  +   \sqrt{1 +  {x}^{2} } \: )}

 \rm  \implies\displaystyle \lim_{ \sf \: x \to0}  \dfrac{{ \rm   (1   - {x}^{}    )}}{ \:  \:  \rm  (\rm \rm \sqrt{1 + x}  +   \sqrt{1 +  {x}^{2} } \: )}

  \rm  \implies\displaystyle  \dfrac{{ \rm (1   - 0    )}}{ \:  \:  \rm  (\rm \rm \sqrt{1 + 0}  +   \sqrt{1 +  0} \: )}

\rm \implies\displaystyle  \dfrac{{ \rm (1   )}}{ \:  \:  \rm  (\rm \rm \sqrt{1}  +   \sqrt{1} \: )}

\rm  \implies\displaystyle  \dfrac{{ \rm  (1   )}}{ \:  \:  \rm  (\rm \rm1  +   1 \: )}

\rm\implies\displaystyle  \dfrac{{ \rm  1 }}{  \rm  2}


rachanakrishna: one more question is there that I uploaded today kindly answer that also dear Kashyap your answers are easy to understand because you give stepwise explanation great effort my dear
rachanakrishna: I will mark your answer as brainliast
Anonymous: Niceeee ❤️
Anonymous: Answer is amazing that's why nice
Similar questions