Math, asked by rachanakrishna, 4 months ago

please answer this question​

Attachments:

rachanakrishna: guys please it is very urgent because it is my homework question

Answers

Answered by udayagrawal49
8

Answer:

The derivative of \tt{ \dfrac{1}{1-x} } is \tt{ \dfrac{1}{(1-x)^{2}} }.

Step-by-step explanation:

w.k.t., derivative of a function f(x) using first principle is \tt{ f'(x) = \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h} }

Let f(x) = \tt{ \dfrac{1}{1-x} }

\tt{ \implies f'(x) = \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h} }

\tt{ \implies f'(x) = \lim_{h \to 0} \dfrac{\dfrac{1}{1-(x+h)}-\dfrac{1}{1-x}}{h} }

\tt{ \implies f'(x) = \lim_{h \to 0} \dfrac{\dfrac{1}{1-x-h}-\dfrac{1}{1-x}}{h} }

\tt{ \implies f'(x) = \lim_{h \to 0} \dfrac{1-x-(1-x-h)}{h(1-x-h)(1-x)} }

\tt{ \implies f'(x) = \lim_{h \to 0} \dfrac{1-x-1+x+h}{h(1-x-h)(1-x)} }

\tt{ \implies f'(x) = \lim_{h \to 0} \dfrac{h}{h(1-x-h)(1-x)} }

\tt{ \implies f'(x) = \lim_{h \to 0} \dfrac{1}{(1-x-h)(1-x)} }

\tt{ \implies f'(x) = \dfrac{1}{(1-x-0)(1-x)} }

\tt{ \implies f'(x) = \dfrac{1}{(1-x)(1-x)} }

\tt{ \implies f'(x) = \dfrac{1}{(1-x)^{2}} }

Similar questions