Math, asked by tummakeerthana19, 3 months ago

please answer this question​

Attachments:

Answers

Answered by Anonymous
20

Given Expression,

f(x) =  -   \sqrt{25 -  {x}^{2} }

We have to find the value of :

 \displaystyle \lim_{x \longrightarrow \: 1} \: \:   \dfrac{f(x) - f(1)}{x - 1}

Putting x = 0 in the above expression, we obtain an indeterminate form.

Using L'Hospital Rule,

\displaystyle \lim_{x \longrightarrow a} \dfrac{f(x)}{g(x)} = \lim_{x \longrightarrow a} \dfrac{f'(x)}{g'(x)}

Now,

 \displaystyle \lim_{x \longrightarrow \: 1} \: \:    \dfrac{d( -  \sqrt{25 -  {x}^{2} } )}{dx}  \\  \\  \implies   -  \displaystyle \lim_{x \longrightarrow \: 1} \: \:    \dfrac{d(\sqrt{25 -  {x}^{2} } )}{dx} \\  \\ \implies   -  \displaystyle \lim_{x \longrightarrow \: 1} \: \:  \dfrac{1}{2 \sqrt{25 -  {x}^{2} } }  \times  \dfrac{d( -  {x}^{2} )}{dx}  \\  \\  \implies    \displaystyle \lim_{x \longrightarrow \: 1} \: \:  \dfrac{2x}{2 \sqrt{25 -  {x}^{2} } }  \\  \\   \implies    \displaystyle \lim_{x \longrightarrow \: 1} \: \:  \dfrac{x}{\sqrt{25 -  {x}^{2} } }  \\  \\  \implies  \:  \dfrac{1}{ \sqrt{25 - 1} }  \\  \\  \implies \:  \dfrac{1}{ \sqrt{24} }

Thus,

 \displaystyle \lim_{x \longrightarrow \: 1} \: \:   \dfrac{f(x) - f(1)}{x - 1}  =  \dfrac{1}{ \sqrt{24} }

Similar questions