Math, asked by amishafilomeena1003, 1 month ago

please answer this question​

Attachments:

Answers

Answered by ZzyetozWolFF
12

5. Represent 7.5 on a number line. Also, justify your answer.

We know that,

∆ OBD is a right-angled triangle. [Refer attachment]

The radius of the circle AC is \sf \dfrac{7.5 + 1}{2} units.

Therefore, OC = OD = OA = \sf \dfrac{7.5 +1}{2} units.

Now, OB = \sf OB = 7.5 - \bigg(\dfrac{7.5+1}{2} \bigg) = \dfrac{7.5 + 1}{2}

By Pythagoras theorem:-

BD² = OD² - OB²

\implies \sf \bigg(\dfrac{7.5 - 1}{2} \bigg)^{2} - \bigg(\dfrac{7.5 - 1}{2} \bigg) = \dfrac{4 (7.5)}{4}

BD² = 7.5 units.

BD = √7.5 units.

6.

  \implies \sf \: \dfrac{ {(243)}^{ \frac{3}{5} } {(25)}^{ \frac{3}{2} }}{   {625}^{ \frac{1}{2} }  \times  {(8)}^{ \frac{4}{3} } \times  {(16)}^{ \frac{5}{4} }  }

 \implies \sf  \dfrac{ {(3)}^{ 5 \times \frac{3}{5} } \times \:  {(5)}^{2 \times  \frac{3}{2} }  }{ {5}^{4 \times  \frac{1}{2} }  \times  {(2)}^{3 \times  \frac{4}{3} } \times  {(2)}^{4 \times  \frac{5}{4} }  }

 \implies \sf \:  \dfrac{ {(5)}^{3 \times } {(3)}^{3}  }{ {(5)}^{2}  \times  {(2)}^{5 + 4} }

 \implies \sf \:  \dfrac{125 \times 27}{25 \times 512}

 \implies \sf \boxed{  \dfrac{3375}{12800} }

Attachments:

Glorious31: Awesome !
Similar questions