Math, asked by noorichrm, 1 month ago

please answer this question​

Attachments:

Answers

Answered by aryanadityaforme17
0

Answer:

your final answer should be x4-1/x4

Attachments:
Answered by Yugant1913
13

Answer:

 \color{green} =  \tt  {x}^{4} -  \frac{1}{ {x}^{4} }  \\

Step-by-step explanation:

 \huge{ \tt \: solution : }

 \tt \bigg (x -  \frac{1}{x}  \bigg) \bigg(x +  \frac{1}{x}  \bigg) \bigg( {x}^{2}  +  \frac{1}{ {x}^{2}}  \bigg) \\

 \tt =  \bigg[( {x}^{2}) - \bigg (   \frac{1}{ {x}^{2} } \bigg)\bigg ]  \bigg( {x}^{2}  +  \frac{1}{ {x}^{2} }  \bigg)

 \color{blue} \tt \bigg [because \: (a + b)(a - b) =  {a}^{2} -  {b}^{2}  \\ \color{blue} \tt and \:above \: a = x \: and \: b =  \frac{1}{x}    \bigg]

 \tt \:  =  \bigg( {x}^{2}  -  \frac{1}{ {x}^{2} }  \bigg) \bigg( {x}^{2}  +  \frac{1}{ {x}^{2} }  \bigg) \\

 \tt = \bigg ( {x}^{2}  -  \frac{1}{ {x}^{2} }  \bigg) \bigg( {x}^{2}  +  \frac{1}{ {x}^{2} }  \bigg) \\

 \tt = ( {x}^{2}  {)}^{2}  -  \bigg( \frac{1}{ {x}^{2} }  { \bigg)}^{2}

 \color{lightblue} \tt \bigg[ because \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \: and \\  \color{lightblue} \tt \: above \: a =  {x}^{2} \: and \: b =  \frac{1}{ {x}^{2} }  \bigg]

 \tt =  {x}^{2 \times 2}  -  \frac{( {1)}^{2} }{( {x}^{2} {)}^{2}  }  \\

 \tt =  {x}^{4}  -  \frac{1}{ {x}^{2 \times 2} }  \\

 \tt =  {x}^{4}  -  \frac{1}{ {x}^{4} } \\

____________________________________________

 \huge \tt \: identity \: used : -  - \\

 \tt( a + b)(a - b)

Similar questions