Math, asked by noorichrm, 1 month ago

please answer this question​

Attachments:

Answers

Answered by anindyaadhikari13
6

\texttt{\textsf{\large{\underline{Solution}:}}}

Given:

\tt \implies \dfrac{x}{y} +  \dfrac{y}{x}  =  - 1

We have to find out the value of x³ - y³.

LCM of x and y is xy.

\tt \implies \dfrac{ {x}^{2} +  {y}^{2}}{xy} =  - 1

Move xy to right side. We get,

\tt \implies{x}^{2} +  {y}^{2} =  -xy

\tt \implies{x}^{2} + xy +  {y}^{2} = 0

Now,

→ x³ - y³ = (x - y)(x² + xy + y²)

As x² + xy + y² = 0,

→ x³ - y³ = 0

\texttt{\textsf{\large{\underline{Answer}:}}}

  • x³ - y³ = 0

\texttt{\textsf{\large{\underline{Additionals}:}}}

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
Similar questions