Math, asked by harikrish22012008, 2 months ago

Please answer this question

Attachments:

Answers

Answered by anindyaadhikari13
10

ANSWER.

  • a = 16.
  • b = -1.

SOLUTION.

Given –

 \tt \implies \dfrac{2 +  \sqrt{3} }{2-\sqrt{3}} +  \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} } +  \dfrac{ \sqrt{3} - 1}{ \sqrt{3}  + 1} = a + b \sqrt{3}

• To solve this, we have to rationalise the denominator of the fractions.

 \tt  \dfrac{2 +  \sqrt{3} }{2 -  \sqrt{3} }

 \tt  =  \dfrac{(2 +  \sqrt{3})^{2} }{(2 -  \sqrt{3})(2 +  \sqrt{3})}

 \tt  =  \dfrac{4+ 3 + 4 \sqrt{3} }{4 - 3}

 \tt  =  7 + 4 \sqrt{3}

Similarly,

 \tt  \dfrac{2 - \sqrt{3} }{2 + \sqrt{3} }

 \tt =   \dfrac{(2 - \sqrt{3})^{2} }{(2 + \sqrt{3})(2 -  \sqrt{3}) }

 \tt =   \dfrac{4 + 3 - 4 \sqrt{3} }{4 - 3}

 \tt = 7 - 4 \sqrt{3}

Also,

 \tt \dfrac{ \sqrt{3}  - 1}{ \sqrt{3} + 1}

 \tt =  \dfrac{( \sqrt{3}  - 1)^{2} }{( \sqrt{3} + 1)( \sqrt{3} - 1) }

 \tt =  \dfrac{3 + 1 - 2 \sqrt{3} }{3 - 1}

 \tt =  \dfrac{4- 2 \sqrt{3} }{2}

 \tt =2 -  \sqrt{3}

Therefore,

 \tt \implies \dfrac{2 +  \sqrt{3} }{2-\sqrt{3}} +  \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} } +  \dfrac{ \sqrt{3} - 1}{ \sqrt{3}  + 1} = a + b \sqrt{3}

 \tt \implies7 + 4 \sqrt{3} + 7 - 4 \sqrt{3} + 2 -  \sqrt{3}    = a + b \sqrt{3}

 \tt \implies16 -  \sqrt{3}  = a + b \sqrt{3}

Comparing both sides, we get,

\begin{cases} \tt a = 16 \\ \tt b = - 1  \end{cases}

Which is our required answer.

Similar questions