please answer this question
Answers
Answer:
a = -1 , b = -4
Step-by-step explanation:
f(x) = ax³ + 3x² - bx - 12
f(2) = 8 a + 12 - 2 b - 12 = 0
4 a - b = 0
b = 4 a
f( - 3 ) = - 27 a + 27 + 3b - 12 = 0
- 27 a + 3 b = - 15
- 27a + 3×4a = -15
15 a = - 15
a = - 1
b = - 4
Question:
If (x - 2) and (x + 3) are factors of p(x) = ax³ + 3x² - bx - 12, find the values of a and b
Answer:
a = 1 & b = 4
Step-by-step explanation:
Given polynomial, p(x) = ax³ + 3x² - bx - 12
- (x - 2) is a factor
x - 2 = 0
x = +2
2 is a zero of the polynomial.
Put x = 2, then p(2) = 0
a(2)³ + 3(2)² - b(2) - 12 = 0
a(8) + 3(4) - 2b - 12 = 0
8a + 12 - 2b - 12 = 0
8a - 2b = 0
2b = 8a
b = 8a/2
b = 4a → [1]
- (x + 3) is a factor
x + 3 = 0
x = -3
-3 is a zero of the polynomial.
Put x = -3, then p(-3) = 0
a(-3)³ + 3(-3)² - b(-3) - 12 = 0
a(-27) + 3(9) + 3b - 12 = 0
-27a + 27 + 3b - 12 = 0
-27a + 3b + 15 = 0
Put b = 4a, [∵ equation 1]
-27a + 3(4a) + 15 = 0
-27a + 12a + 15 = 0
-15a + 15 = 0
15a = 15
a = 15/15
a = 1
⇒ b = 4a
⇒ b = 4(1)
⇒ b = 4
Therefore, a = 1 and b = 4