Math, asked by amishafilomeena1003, 1 month ago

please answer this question ​

Attachments:

Answers

Answered by RadarAverage
1

Step-by-step explanation:

2√2a³+8b³-27c³+18√2abc

=>(√2a)³+(2b)³+(-3c)³-3(√2a)(2b)(-3c)

=>(√2a+2b-3c)(2a²+4b²+9c²-2√2ab+6bc+3√2ca)

And There You Go..!

Answered by mathdude500
2

\large\underline{\bold{Given \:Question - }}

Factorise :-

\rm :\longmapsto\:2 \sqrt{2} {a}^{3} +  {8b}^{3} -  {27c}^{3} + 18 \sqrt{2}abc

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:2 \sqrt{2} {a}^{3} +  {8b}^{3} -  {27c}^{3} + 18 \sqrt{2}abc

Now,

Consider,

\rm :\longmapsto\: {2 \sqrt{2} a}^{3}

\rm \:  =  \:  \: \sqrt{2} \times  \sqrt{2} \times  \sqrt{2} \times  {a}^{3}

\rm \:  =  \:  \: {( \sqrt{2} a)}^{3}

So,

\rm :\implies\:2 \sqrt{2}  {a}^{3}   =  \:  \: {( \sqrt{2} a)}^{3}

Now, Consider,

\rm :\longmapsto\: {8b}^{3}

\rm \:  =  \:  \:2 \times 2 \times 2 \times  {b}^{3}

\rm \:  =  \:  \: {(2b)}^{3}

So,

\rm :\implies\: {8b}^{3} =  \:  \: {(2b)}^{3}

Now, Consider

\rm :\longmapsto\: {27c}^{3}

\rm \:  =  \:  \:3 \times 3 \times 3 \times  {c}^{3}

\rm \:  =  \:  \: {(3c)}^{3}

So,

\rm :\implies\: {27c}^{3}  =  \:  \: {(3c)}^{3}

So, given expression

\rm :\longmapsto\:2 \sqrt{2} {a}^{3} +  {8b}^{3} -  {27c}^{3} + 18 \sqrt{2}abc

can be rewritten as

\rm \:  =  \:  \:(\sqrt{2}a)^{3}+{(2b)}^{3} -  {(3c)}^{3}+3 \times (3 \sqrt{2})(2b)(3c)

\rm \:  =  \:  \:(\sqrt{2}a)^{3} +{(2b)}^{3} + {( - 3c)}^{3} - 3 \times (3 \sqrt{2})(2b)( - 3c)

We know that,

\boxed{ \sf{ \: {x}^{3}+{y}^{3}+{z}^{3} - 3xyz = (x + y + z)( {x}^{2}+{y}^{2}+{z}^{2} - xy - yz - zx)}}

So,

Here,

\rm :\longmapsto\:x =  \sqrt{2}a

\rm :\longmapsto\:y =  2b

\rm :\longmapsto\:z =   - 3c

So, on substituting the values, we get

\rm\:= ( \sqrt{2}a + 2b - 3c)\bigg( {(\sqrt{2}a)}^{2}+{(2b)}^{2} +  {( - 3c)}^{2} - (\sqrt{2}a)(2b) - (2b)( - 3c) - ( - 3c)(\sqrt{2}a)  \bigg)

\rm \: =(\sqrt{2}a + 2b - 3c)(2 {a}^{2} +  {4b}^{2}+{9c}^{2} - 2\sqrt{2}ab + 6bc + 3\sqrt{2}ac)

Additional Information :-

More Identities to know

\boxed{ \sf{ \: {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}

\boxed{ \sf{ \: {(x  -  y)}^{2} =  {x}^{2}  -  2xy +  {y}^{2}}}

\boxed{ \sf{ \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

\boxed{ \sf{ \: {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}}

\boxed{ \sf{ \: {(x  -  y)}^{3} =  {x}^{3}  -   {y}^{3}  -  3xy(x  -  y)}}

\boxed{ \sf{ \: {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2}}}

\boxed{ \sf{ \: {x}^{3}  -   {y}^{3} = (x  -  y)( {x}^{2}  +  xy +  {y}^{2}}}

\boxed{ \sf{ \: {(x + y + z)}^{2} =  {x}^{2} +  {y}^{2} +  {z}^{2}  + 2(xy + yz + zx)}}

\boxed{ \sf{ \: {(x + y)}^{2} -  {(x - y)}^{2} = 4xy}}

\boxed{ \sf{ \: {(x + y)}^{2} + {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}

\boxed{ \sf{ \: {(x + y)}^{2} =  {(x - y)}^{2}  + 4xy}}

\boxed{ \sf{ \: {(x  -  y)}^{2} =  {(x  +  y)}^{2}   -  4xy}}

Similar questions