Math, asked by kalpna9692, 2 months ago

please answer this question​

Attachments:

Answers

Answered by khushbookumari38ie
1

Answer:

Hope it will help you....

Attachments:
Answered by DeeznutzUwU
0

Answer:

I am only able to see the (ii), (iii) and (iv) questions clearly and will only be able to answer those 3

(ii) 32^{\frac{2}{5} }

    We can write 32 as a product of its factors

    ⇒ (2*2*2*2*2)^{\frac{2}{5} }

    ⇒ (2^{5} )^{\frac{2}{5} }

    We know that (a^{m})^{n}  = a^{m*n}

    ⇒ 2^{5*\frac{2}{5} }

    5's cancel each other out

    ⇒ 2^{2}

    ⇒ 2*2 = 4

(iii) 16^{\frac{3}{4}}

      We can write 16 as a product of its factors

      ⇒ (2*2*2*2)^{\frac{3}{4} }

      ⇒ (2^{4})^{\frac{3}{4} }

      We know that (a^{m})^{n}  = a^{m*n}

      ⇒ 2^{4*\frac{3}{4} }

      4's cancel each other out

      ⇒ 2^{3}

      ⇒ 2*2*2 = 8

(iv) 125^{\frac{-1}{3} }

     We can write 125 as a product of its factors

     ⇒ (5*5*5)\frac{-1}{3}

     ⇒ (5^{3} )\frac{-1}{3}

     We know that (a^{m})^{n}  = a^{m*n}

     ⇒ 5^{3*\frac{-1}{3} }

     3's cancel each other out

     ⇒ 5^{-1}

     We know that a^{-1} = \frac{1}{a}

     ⇒ \frac{1}{5}

 

Similar questions