Math, asked by amishafilomeena1003, 1 month ago

please answer this question​

Attachments:

Answers

Answered by anushka576914
4

1/1+3√2

=1-3√2/(1+3√2)(1-3√2)

=1-3√2/1²-(3√2)²

=1-3√2/1-3²(√2)²

=1-3√2/1-9(√2)²

=1-3√2/1-18

=1-3√2/-17

=-1+3√2/17

hope it is helpful to you

Answered by CopyThat
11

Step-by-step explanation:

Rationalizing factor of \bold{\frac{1}{1+3\sqrt{2} } } ?

\rightarrowtail \bold{\frac{1}{1+3\sqrt{2}\ } \bold{\times}\frac{1-3\sqrt{2} }{1-3\sqrt{2} }}

\rightarrowtail \bold{\frac{1-3\sqrt{2} }{(1)^2-(3\sqrt{2})^2 } }

\rightarrowtail \bold{\frac{1-3\sqrt{2} }{1-(3\sqrt{2})^2 } }

\rightarrow \bold{1-(3\sqrt{2})^2= 1 - 3\sqrt{2}\times3\sqrt{2}   }

\rightarrow \bold{1-3\times3\times\sqrt{2}\times\sqrt{2}  }

\rightarrow  \bold{1-9\times\sqrt{4} }

\rightarrow \bold{1 - 9\times 2}

\rightarrow \bold{1-18=-17}

\rightarrowtail \bold{\frac{1-3\sqrt{2} }{-17}\;or\;\frac{1+3\sqrt{2} }{17}  }

\bold{\frac{1+3\sqrt{2} }{17} } is the rationalizing factor of \bold{\frac{1}{1+3\sqrt{2} } }.

Similar questions